
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics
Study Programme: Cybernetics and Robotics

Field of Study: Robotics

Visual Functional Testing of Electronic Systems

Kamerová kontrola funkčnosti elektronických systémů

Master’s Thesis

Author: Bc. Jan Paštyka
Supervisor: Ing. Vladimír Smutný, Ph.D.

May 2018

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420297Personal ID number:Paštyka JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Visual Functional Testing of Electronic Systems

Master’s thesis title in Czech:

Kamerová kontrola funkčnosti elektronických systémů

Guidelines:
1. Get familiar with the basic methods of computer vision and image processing.
2. Design the system, which will capture images of front panel of industrial electronics.
3. Propose and implement the image processing tools which will check the status of LED indicators in the captured images.
4. Propose and implement the interface to the testing system and overall control of the system.
5. Test the system on the selected tested device and make conclussion.

Bibliography / sources:
[1] Milan Sonka, Vaclav Hlavac, and Roger Boyle: Image Processing, Analysis and Machine Vision. Thomson, 3rd edition,
2007.
[2] Bernd Jahne: Digital Image Processing. Springer Verlag, Berlin, 2005.
[3] Firemní literatura výrobců kamer: Basler, Allied Vision..
[4] Dokumentace sběrnice Modbus.

Name and workplace of master’s thesis supervisor:

Ing. Vladimír Smutný, Ph.D., Robotic Perception, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 25.05.2018Date of master’s thesis assignment: 09.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vladimír Smutný, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Author statement for undergraduate thesis

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Prague, date
..

signature

v

vi

Acknowledgement

I would like to thank my thesis supervisor Ing. Vladimír Smutný, Ph.D. for his advice,
support, and consultations when writing this thesis. I would also like to thank my family
for all their support throughout my studies and writing this thesis.

Jan Paštyka

vii

viii

Annotation

This thesis deals with design and implementation of a system for automatic state recog-
nition of diagnostic LEDs on industrial devices. LEDs states are recognized from images
captured by an industrial camera. LED state analysis is performed on a computer con-
nected to the camera and also to the test control system, which receives information
about the LED state upon request. This thesis contains a description of a selection of
appropriate industrial camera and lens, a design of a mechanical solution of a camera
holder and description of an implemented user application. The application allows to
configure a camera, performs LEDs states recognition, and communicates with the test
control system. The thesis also describes the design of all parts of the system, results
of its testing under real conditions, and a detailed user manual. The final system is suf-
ficiently variable to be used during testing of standard types of industrial devices with
green, red, and orange LED indicators. The main benefit of this thesis is the broadening
of the possibilities of automation of software tests of industrial devices.

Keywords

computer vision, industrial camera, LED state, diagnostic LEDs, classification

ix

x

Anotace

Tato práce se zabývá návrhem a realizací systému pro automatické rozpoznávání stavů
diagnostických LED na průmyslových zařízeních. Stav LED diod je rozpoznáván ze
snímků pořízených průmyslovou kamerou. Analýza stavu LED je prováděna na počí-
tači, ke kterému je připojena tato kamera a nadřazený systém řídicí testy, kterému
jsou na požádání posílány informace o rozpoznaných stavech LED. Součástí této práce
je popis výběru vhodné průmyslové kamery a objektivu, návrh mechanického řešení
uchycení kamery na stojan s testovanými zařízeními a implementace obslužné aplikace.
Tato aplikace umožňuje konfiguraci kamery, provádí rozpoznávání stavů LED a za-
jišťuje komunikaci s nadřazeným systémem, který řídí test. V práci je popsán postup
návrhu všech dílčích částí systému, výsledky jeho testování za reálných podmínek a také
podrobný uživatelský manuál. Výsledný systém je dostatečně variabilní pro použití při
testování standardních typů průmyslových zařízení se zelenými, červenými a oranžovými
indikačními LED. Hlavním přínosem této práce je rozšíření možností automatizace soft-
warových testů průmyslových zařízení.

Klíčová slova

počítačové vidění, průmyslová kamera, stav LED, diagnostické LED, klasifikace

xi

xii

Contents

1 Introduction 1

2 System Requirements and Specifications 3

3 System Design and Implementation 5

3.1 System Design . 5

3.1.1 Function Principle . 5

3.1.2 Mechanical Solution . 7

3.1.3 Selection of the Industrial Camera 8

3.1.4 Design of an Optical Path . 11

3.1.5 Wiring Diagram . 12

3.1.6 Target Platform . 12

3.2 Used Software Tools . 13

3.2.1 Graphical User Interface (GUI) 13

3.2.2 Industrial Camera API . 13

3.2.3 Modbus Communication Protocol 13

3.2.4 Storing of Configuration and Data Files 14

3.2.5 Tools for Digital Image Processing 15

3.3 Digital Image Processing . 15

3.3.1 Analysis Process . 15

3.3.2 Camera Calibration . 18

3.3.3 Finding Homography . 21

3.3.4 Object Tracking . 23

3.3.5 LED State Classification . 27

3.4 Application Design . 31

xiii

3.4.1 Design of GUI . 33

3.4.2 Camera Interface . 33

3.4.3 Stored Data and Their Format 33

3.4.4 Multithread Approach . 34

3.4.5 Error Handling . 34

3.4.6 Communication Between LED State Analyzer and the Test Con-
trol System . 35

3.4.7 Documentation . 37

4 User’s Manual 39

4.1 Requirements of LED State Analyzer . 39

4.2 Start of the Application . 40

4.3 Preferences . 40

4.3.1 Camera Calibration . 41

4.3.2 Exposure Times Setting . 41

4.3.3 Gain . 42

4.3.4 White Balance . 42

4.3.5 RANSAC Threshold . 43

4.4 Test Setup Configuration . 43

4.4.1 List of Devices . 43

4.4.2 Naming of Devices . 44

4.4.3 Camera Connection . 44

4.5 Localization of Devices’ Corners . 44

4.5.1 Device Corners Marking . 45

4.5.2 Object Tracking . 45

4.6 Configuration of LED State Recognition 45

4.6.1 Classifier Configuration . 46

4.6.2 State Recognition Testing . 47

4.7 Real-Time Analysis . 48

4.7.1 Interface for Sending Requests from a Client Application 49

4.8 Generating of Database of Devices . 50

xiv

5 System Testing 51

5.1 Mechanical Arrangement and Wiring . 51

5.2 Configuration of LED State Analyzer . 52

5.3 Response Analysis of the System . 52

5.4 System Stability and Accuracy . 53

6 Conclusion 55

Bibliography 57

A Dimensions Describing a Device 59

B Attached CD Contents 61

xv

xvi

List of Figures

3.1 A simplified block diagram of the system. Red blocks are fully imple-
mented within this thesis (by using third-party libraries). Blue blocks
illustrate libraries essential for the system functionality. Gray block is a
current test system, which shall not be modified. 5

3.2 The concept of a mechanical solution of camera holder. 7

3.3 Attaching of a construction to the rack. 7

3.4 Mounting of the camera to the adjustable arm. 7

3.5 Revolute joint with lock. 8

3.6 Industrial camera Basler dart daA2500-14uc [1]. 8

3.7 Bayer filter [3]. 10

3.8 Spectral response of camera Basler dart daA2500-14uc[2]. 11

3.9 Illustration of a camera and an area it observes. 11

3.10 Lens Basler Lens C125-0618-5M F1.8 f6mm. 12

3.11 Wiring diagram of the system. 12

3.12 Modbus transaction [7]. 14

3.13 Diagram of the analysis process. 16

3.14 Geometric illustration of a pinhole model [16]. 18

3.15 Illustrations of radial distortion. From the left: no distortion, positive
radial distortion, negative radial distortion. 19

3.16 Illustrations of tangential distortion. From the left: no distortion, tan-
gential distortion. 19

3.17 Comparison of an image captured for camera calibration before (3.17a)
and after (3.17b) correction. 21

3.18 Illustration of projective transformation. Fig. 3.18b was created by ap-
plying homography to the Fig. 3.18a. 22

xvii

3.19 Example of probability density functions for correct and incorrect
matches in terms of the ratio of nearest to second nearest neighbor of
each keypoint [22]. 25

3.20 Estimation of parameters of linear function from set of points by using
least-squares method (3.20a) and RANSAC method (3.20b) [16]. 26

3.21 Analyzed area for state recognition of a round LED. 27

3.22 Color of pixels corresponding to each LED state (only red and green color
channel). 28

3.23 Average color of pixels corresponding to each LED state with covarience
elipse around it (only red and green color channel). 29

3.24 The average color of pixels corresponding to each LED state with covari-
ance ellipse around it and thresholds between classification classes (only
red and green color channel). 30

3.25 Example of classification map of randomly selected reference LEDs and
all pixels corresponding to these LEDs. 31

3.26 Simplified class diagram of LED State Analyzer. 32

3.27 Process of a real-time analysis from the communication point of view. . 36

3.28 Illustration of data structure sent from a server to the client. 36

4.1 Icon of the application LED State Analyzer. 40

4.2 Preview of the window Preferences. 41

4.3 Preview of the main window with selected tab Test Setup Configuration. 43

4.4 Preview of the main window with selected tab Localization of Devices’
corners. 44

4.5 Preview of the main window with selected tab Configuration of LED
State Recognition. 46

4.6 Preview of a window for classifier setup. 46

4.7 Illustration of thresholds used for classification. Thresholds off/green and
off/red are defined by intensity of green or red respectively. Thresholds
green/orange and orange/red are given by the angles that constrain with
the x-axis (red intensity). 47

4.8 Preview of the main window with selected tab Real-Time Analysis. . . . 49

5.1 Test setup used during testing with attached industrial camera. 51

A.1 General device with marked dimensions. 59

xviii

List of Tables

3.1 Parameters of an industrial camera Basler dart daA2500-14uc [2]. 9

3.2 Four primary tables of Modbus data model [7]. 14

3.3 Considered states of LED. 27

3.4 Considerd states of LED and corresponding value of state bits. 37

5.1 Time durations of critical parts of a real-time analysis. 53

xix

xx

Glossary

A-KAZE Accelerated-KAZE. Algorithm for feature detection and description.

API Application Programming Interface. Set of tools used for communication
between different software components.

ATE Automatic Test Equipment. A system that performs tests of device
under test (DUT). DUT is controlled based on these tests, and its
response is measured and analyzed.

BRIEF Binary Robust Independent Elementary Features. Algorithm for feature
description.

BRISK Binary Robust Invariant Scalable Keypoints. Algorithm for feature
detection and description.

CCD Charge-Coupled Device. A device that converts the energy of incident
light into electrical energy.

CPU Central Processing Unit

DUT Device Under Test. A developed device which is tested by automatic test
equipment. In this thesis, it is typically a factory device with diagnostic
LEDs.

FAST Features from Accelerated Segment Test. Algorithm for Corner
Detection.

GUI Graphical User Interface. An interface between an application and a user
which uses graphical icons and indicators for application control.

ID Identifier. Label that uniquely identifies an object.

IP Internet Protocol. A protocol which is used for transmitting data
between computers by using the internet.

IR Infrared Radiation. Electromagnetic radiation with a longer wavelength
than a wavelength of visible light.

JSON JavaScript Object Notation. A format for storing and exchange of data.

k-NN k-Nearest Neighbors. Classification method.

xxi

KAZE Japanese word for wind. Algorithm for feature detection and description.

LED Light-Emitting Diode

LUT Lookup Table. A data structure that stores data that would otherwise
have to be computed. These data are accessed using a key.

ORB Oriented FAST and Rotated BRIEF. Algorithm for feature detection and
description.

POSIX Portable Operating System Interface. Unified application interface that
ensure portability of applications across different UNIX and other
operating systems.

RAM Random-Access Memory

PWM Pulse-Width Modulation. Method of controlling the output device.

RANSAC Random Sample Consensus. Method of estimating model parameters
from measured data.

SIFT Scale-Invariant Feature Transform. Algorithm for feature detection and
description.

SMD Surface-Mount Device. An electronic component designed for surface
mounting of printed circuit board.

SURF Speeded-Up Robust Features. Algorithm for feature detection and
description.

USB Universal Serial Bus. The bus used to connect peripherals to a computer.

XML Extensible Markup Language. A format for storing and exchange of data.

xxii

Chapter 1

Introduction

Testing is an integral part of each development process. Many segments of a software
testing are currently automated and technologies are moving towards complete automa-
tion of testing. There already exist many solutions for the simulation of user interaction.
For example electronically controlled devices for pressing buttons on a device under test
(DUT) or devices for simulation of a user-controlled touchscreen. Simulation of a user
interaction is typically much more straightforward to implement than the interpretation
of device state based on its observation.

One part of the testing of the industrial devices involves checking if a states of
diagnostic LEDs on a DUT corresponds to its expected internal state. Mostly this test
has to be done visually by a tester , but there are also automatic solutions. There can be
used a device with a matrix of photoelements, which can be deploayed on a DUT so that
the photoelements are directly in front of the diagnostic LEDs. This type of devices can
provide information about the state of diagnostic LEDs. The significant disadvantage
of this approach is that this device cannot be used for DUTs with a different layout of
LEDs. Another problem is that LEDs are typically entirely occluded by the device, and
therefore they cannot be seen by a tester. Both these disadvantages can be eliminated
by using a camera for recognition of LED state instead of the matrix of photoelements.
Even though this approach is less reliable, it seems to be a better option in most of the
typical cases.

The goal of this thesis is to design and implement a system for automatic recognition
of the state of diagnostic LEDs of DUT and pass this information to the test control
system. State of LEDs will be evaluated based on a DUT image captured by an industrial
camera. The system should be easily configured by a user through an application with
GUI.

Thesis Outline

• Chapter 2 introduces requirements for the developed system and parameters of
devices under test.

• Chapter 3 is dedicated to designing and implementation of the whole system.

1

This chapter provides a detailed description of a mechanical solution and the
selections of an industrial camera and appropriate software tools. Rest of the
chapter is dealing with used techniques of image processing and implementation
of the control application.

• Chapter 4 contains detailed user’s manual for the developed system.

• Chapter 5 focuses on testing of the whole system under real conditions with a
discussion of achieved results.

• Chapter 6 contains a conclusion including restrictions and possible improvements
of the developed system.

2

Chapter 2

System Requirements and
Specifications

The whole system for LED state recognition is created according to the requirements
defined by software testers from the company Siemens who are potential users of the
system. Beside requirements to be met by the system, there are also specifications of the
DUTs. Knowledge of all parameters and restrictions is necessary for finding a suitable
solution.

Parameters of Devices Under Test:

• The width of observed area does not exceed 500 mm.

• The height of observed area does not exceed 300 mm.

• Front panels of devices have a shape of a rectangle.

• Observed LEDs can be round or rectangular.

• Width (or diameter) of observed LEDs is at least 3 mm.

• Each LED can be green, red, or orange.

System Requirements:

• The system shall be controlled by an application with graphical user interface
(GUI).

• The system shall provide the current recognized state of the observed LEDs upon
request of the test control system.

• The time duration between sending a request for current LED states by the test
control system and receiving a response shall be less than 0.5 s.

3

• Communication between computer performing the analysis and the test control
system shall use the Modbus protocol.

• An interface for communication between an application and the test control system
on client side shall use the library libmodbus 1.2.0.

• Computer performing the analysis shall be connected to the test control system
via Ethernet.

• In case of closing communication channel by a client application, a server shall
wait for reconnection to a client.

• The distance between DUT and an industrial camera shall be maximally 600 mm.

• The system shall be able to recognize at least four states of LED: green, red,
orange, and turned off.

• The system shall be able to suppress an influence of different lights conditions.

• The system shall be easy to use for LEDs recognition on different types of devices.

• Wiring of the system shall be straightforward.

• The system configuration shall be simple.

4

Chapter 3

System Design and Implementation

3.1 System Design

System design is based on requirements in Chapter 2. It could be split into three,
almost independent, parts: mechanical solution, selection of appropriate hardware, and
design of a software. First two parts are described in this section and software design is
described in Section 3.4.

3.1.1 Function Principle

Block diagram of the whole system is shown in Fig. 3.1. Individual components of the
system are described in more detail in the following paragraphs.

Camera interface

Modbus – Server

Modbus – Client

Controlling of DUT

Interface for communication
with application for automatic

LED states analysis

Application for automatic LED
states analysis

Modbus

Scene with devices under
test (DUT)

Industrial camera

USB 3.0

Computer performing the analysis

Test control system

Automatic test equipment (ATE)

Implemented within this thesis

Used third-party libraries

Shall not be modified

Figure 3.1: A simplified block diagram of the system. Red blocks are fully im-
plemented within this thesis (by using third-party libraries). Blue blocks illustrate
libraries essential for the system functionality. Gray block is a current test system,
which shall not be modified.

5

Test setup consists of two separate parts: automatic test equipment (ATE) and
devices under test (DUT). ATE is any set of devices performing tests on other devices.
ATE currently consists only of a block “Controlling of DUT”, but as it is shown in the
diagram, it will be extended with the system for automatic recognition of LED states.
DUT is a tested device which is controlled and checked by the test control system.

Camera Interface

An interface between industrial camera and application for LED state analysis uses
camera API. Some information about the API is written in Section 3.2.2. Use of the
API is in the more details described in Section 3.4.2.

Application for Automatic LED State Analysis

User application for automatic LED state analysis is called LED State Analyzer. This
application is the main part of the system. It provides functionality for controlling a
camera, processing of captured images, recognition of LED states, and interaction with
the test control system. In the LED State Analyzer application, it is also possible to
configure the type of DUT, LED state recognition, and communication with the test
control system. Design of this application is described in Section 3.4.

Modbus Interface (Client, Server)

Modbus communication protocol is used for communication between LED State An-
alyzer and the test control system. This protocol is client–server based. LED State
Analyzer is the server and the test control system is the client. Basic information about
Modbus protocol is written in Section 3.2.3. Data transmission between the client and
the server and its data structure is described in Section 3.4.6.

Interface for Communication with Application for Automatic LED State
Analysis

Interface for communication with LED State Analyzer provides functionality for getting
the current recognized states of LEDs. This interface differs for distinct configurations
of DUTs. Interface description and structure of data transmitted between client and
server is described in Section 3.4.6.

Controlling of DUT

Controlling of DUT is responsible for performing tests according to the configuration.
DUTs are controlled using test control logic, which depends on the type of test and
type of DUT. Controlling of DUT can use an interface for communication with LED
State Analyzer but it is not allowed to implement any functions related to LED state
recognition inside this part of test control system.

6

3.1.2 Mechanical Solution

Devices under test are placed on a rack. A mechanical construction with a camera is
attached to the top of the rack. This construction is made of aluminum profiles with an
adjustable arm on which an industrial camera is located. The revolute joint with lock
allows the arm to be turned aside if necessary. This feature is useful when no tests are
running, and the tester shall works on the rack without any restrictions. The concept
of a mechanical solution is shown in Fig. 3.2.

ca. 50 cm

Revolute joint
with lock

Industrial
camera

Devices
under test

Rack with devices
under test

Figure 3.2: The concept of a mechanical solution of camera holder.

Photos of some parts of a mechanical construction are shown in Fig. 3.3, 3.4 and 3.5.

Figure 3.3: Attaching of a construction
to the rack.

Figure 3.4: Mounting of the camera to
the adjustable arm.

7

Figure 3.5: Revolute joint with lock.

3.1.3 Selection of the Industrial Camera

The Basler daA2500-14uc camera was chosen for implementation of the system
(Fig. 3.6). This camera is designed and optimized for machine vision. Some of its pa-
rameters are written in Tab. 3.1. Decisions which led to the selection of this camera are
described below.

Figure 3.6: Industrial camera Basler dart daA2500-14uc [1].

8

Table 3.1: Parameters of an industrial camera Basler dart daA2500-14uc [2].

Parameter Value

Sensor Type ON Semiconductor MT9P031
Sensor Size 5.7 × 4.3 mm
Resolution (H × V) 2592 × 1944 pixels
Resolution 5 MP
Frame Rate 14 fps
Mono/Color Color
Interface USB 3.0

It was necessary to consider all system requirements during selection of a suitable
camera. It is required to recognize LEDs of different colors, so the camera has to be a
color one. A frame rate of the camera has to be at least 2 fps. The camera should contain
software trigger which enables to control the time of image capture. In a computer
vision, it is not appropriate to use a camera with autofocus, and it is always better to
use a separate lens with manual focus. Images from the camera should be of a very
high quality without any lossy compression. The camera should also communicate via
commonly used interface (e.g., USB or Ethernet) and provide sufficient support for
Linux and C++ API (see Section 3.1.6). All these requirements are met by the selected
camera.

Last important factor in the selection of a camera was its spatial resolution. Camera
Basler dart daA2500-14uc uses Bayer filter, like most of the single-chip cameras. As it
is shown in Fig. 3.7, in Bayer filter, half of all pixels are used for capturing green color
and a quarter of all pixels is used for capturing red and blue color. Since recognition of
colors is essential in this application, the minimum acceptable size of LED in the image
must be decided. The following consideration was used for determination of minimum
width (height) of the LED in pixels. Based on Shannon’s Theorem, at least two times
more pixels (linearly) should be used than necessary for color detection, which is two
pixels. In practice, this minimum is not sufficient, and at least three pixels should be
used. As it was already mentioned, a camera uses a Bayer mask, and therefore every
set of four pixels contains only one pixel with information about red and blue color. It
means that we need at least four times more pixels (twelve). There should also be some
reserve for a possibility of inaccurate localization of LEDs or mild camera vibrations,
so three more pixels are added. Based on these considerations, each LED should be
displayed on an area with size at least 15 × 15 pixels.

9

G B

R G

G B

R G

G B

R G

G B

R G

G B

R G

G B

R G

G B

R G

G B

R G

G B

R G

0 1 2 3 X - 1 X

0

1

2

3

Y - 1

Y

Figure 3.7: Bayer filter [3].

According to the DUT parameters (see Chapter 2), the minimum dimensions of
each LED is 3 mm × 3 mm. Each LED should thus be visible on an area with the size
of at least 15 × 15 pixels. Maximal dimension of a scene is 500 mm × 300 mm, and
an aspect ratio of the image is 4:3, so it is sufficient to determine the minimal width
(number of pixels in one row).

Minimal number of pixels in one row for the worst case (the broadest scene with
the smallest LEDs) can be calculated using Eq. 3.1, where sp is a minimal number of
pixels in one row of a captured image, lp is a width of the smallest LED in pixels, sm is a
maximal width of scene in millimeters, and lm is a width of smallest LED in millimeters.

sp =
lp · sm
lm

=
15 · 500

3
= 2500 pixels (3.1)

The width of an image captured by a camera should be at least 2500 pixels based
on the result of Eq. 3.1. Industrial camera Basler dart daA2500-14uc has resolution
2592 × 1944 pixels which is sufficient.

Spectral Response of the Camera

Camera Basler dart daA2500-14uc uses sensor MT9P031 manufactured by the company
ON Semiconductor. An important property of a camera sensor is its spectral response,
which is shown in Fig. 3.8. The spectral response curve excludes lens characteristics,
light source characteristics, and IR cut filter characteristics [2]. This curves will be taken
into account in image processing and LED color recognition.

10

AW00130507000 Specifications, Requirements, and Precautions

Basler dart USB 3.0 17

30

25

20

15

10

5

0
400 500 600 700 800 900 1000

Wavelength (nm)

LS
B

10
/n

J/
cm

²

Blue

Green

Red

Fig. 6: daA1600-60um Spectral Response (From Sensor Data Sheet)

350 400 450 500 550 600 650 700 750

0

5

10

15

20

25

30

35

40

45

50

Wavelength (nm)

Q
ua

nt
um

 E
ffi

ci
en

cy
 (

%
)

Blue

Green

Red

Fig. 7: daA1920-15uc, daA1920-30uc, and daA2500-14uc Spectral Response (From Sensor Data Sheet)
Figure 3.8: Spectral response of camera Basler dart daA2500-14uc[2].

3.1.4 Design of an Optical Path

The design of an optical path is based on system requirements in Chapter 2. It is
necessary to know the size of an observed object, the distance between the camera and
an observed object and size of the camera sensor to select a suitable lens. The camera
with lens and an area it observes are illustrated in Fig. 3.9.

l f

y

Field of view

Industrial camera

y
‘

Figure 3.9: Illustration of a camera and an area it observes.

Based on this illustration we can compose the Eq. 3.2 for focal length calculation.
Definitions of symbols: f is the focal length, l is the distance between observed object
and lens, y is the width of an object (field of view) and y′ is the width of a sensor. All
dimensions are in millimeters.

f =
l · y′
y

=
600 · 5.7

500
= 6.84 mm (3.2)

11

Considering the result of Eq. 3.2 and available lenses for the camera Basler dart
daA2500-14uc we can select lens with focal length 6 mm or 8 mm. Calculated focal
length is valid for a maximum allowed distance between object and lens. This distance
can be smaller in practise, and therefore it seems to be more appropriate to select a
lens with focal length 6 mm. We selected Basler Lens C125-0618-5M F1.8 f6mm and
its photo is shown in Fig. 3.10 [4].

Figure 3.10: Lens Basler Lens C125-0618-5M F1.8 f6mm.

3.1.5 Wiring Diagram

Wiring of the whole system is straightforward, which is also one of the requirements
in Chapter 2. LED State Analyzer (which controls the camera, communicates with the
test control system and performs image processing) is running on a separate computer.
This computer is connected to the test control system via an ethernet cable and also
to the industrial camera via a USB 3.0 cable. Wiring diagram of these connections is
shown in Fig. 3.11.

Ethernet cable USB 3.0 cable

RJ-45 RJ-45 USB 3.0 Type A micro USB 3.0 Type B

Industrial camera

Computer with LED State AnalyzerTest control system

Figure 3.11: Wiring diagram of the system.

3.1.6 Target Platform

The target platform for LED State Analyzer is 64-bit Linux. The application was de-
veloped and tested on the 64-bit Linux distribution Mint 18, and this is also the only
platform on which it was tested. The main reason for choosing Linux is to provide sup-
port for replacing a computer with Raspberry Pi or other embedded systems. However,
this variant is out of the scope of this thesis.

12

3.2 Used Software Tools

LED State Analyzer is implemented in C++ by using third-party open-source libraries
described in this section. Programming language C++ was chosen for its performance
and support of used libraries. All used libraries and code samples are free to use for
commercial applications.

3.2.1 Graphical User Interface (GUI)

For a user’s comfort, LED State Analyzer uses GUI. There are several GUI libraries for
C++, and it was necessary to select library which can be used for commercial purposes.
One of these libraries is GTK+ which is used here. This library is written in C, but
there exists a C++ interface called Gtkmm. Gtkmm added support for using the library
in an object-oriented C++ application. Used version of this interface is Gtkmm 3.0,
which was the latest released version at the time of writing this thesis. [5].

There are two ways of a GUI design. It can be created directly in the source code
by placing widgets to appropriate layouts. An advantage of this approach is that a
programmer has the design of the application fully under control and the source code
can be easily optimized. The second option is to use an application where GUI can be
designed graphically and based on that design the source files (which can be loaded by
a developed application) are generated. One of these applications for GTK+ is Glade.
Glade provides tools for design of complete applications GUI which is then saved as
.glade file. Gtkmm 3.0 provides tools for generating GUI using this file.

3.2.2 Industrial Camera API

Software package pylon 5 provided by the company Basler is used for communication
with an industrial camera. This package contains camera drivers for Linux, software for
testing the camera – pylon Viewer, and C++ API for controlling a camera. There is
also available very detailed C++ Programmer’s Guide for Linux for the API and code
samples of typical applications [6].

3.2.3 Modbus Communication Protocol

As it was already mentioned in Section 3.1.1, communication between LED State An-
alyzer, and the test control system uses Modbus protocol. Modbus is a protocol on the
application layer which can exploit various network layers, data link layers, and physical
layers.

Modbus is a client/server based communication protocol used for communication
between devices connected to different types of buses or networks. A typical transaction
between client and server without any error is shown in Fig. 3.12. The client sends initial
request to the server, the server receives a request, performs required action and sends
response data back to the client that processes them [7].

13

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 4/50

The MODBUS application data unit is built by the client that initiates a MODBUS transaction.
The function indicates to the server what kind of action to perform. The MODBUS application
protocol establishes the format of a request initiated by a client.

The function code field of a MODBUS data unit is coded in one byte. Valid codes are in the
range of 1 ... 255 decimal (the range 128 – 255 is reserved and used for exception
responses). When a message is sent from a Client to a Server device the function code field
tells the server what kind of action to perform. Function code "0" is not valid.

Sub-function codes are added to some function codes to define multiple actions.

The data field of messages sent from a client to server devices contains additional information
that the server uses to take the action defined by the function code. This can include items
like discrete and register addresses, the quantity of items to be handled, and the count of
actual data bytes in the field.

The data field may be nonexistent (of zero length) in certain kinds of requests, in this case the
server does not require any additional information. The function code alone specifies the
action.

If no error occurs related to the MODBUS function requested in a properly received MODBUS
ADU the data field of a response from a server to a client contains the data requested. If an
error related to the MODBUS function requested occurs, the field contains an exception code
that the server application can use to determine the next action to be taken.

For example a client can read the ON / OFF states of a group of discrete outputs or inputs or
it can read/write the data contents of a group of registers.

When the server responds to the client, it uses the function code field to indicate either a
normal (error-free) response or that some kind of error occurred (called an exception
response). For a normal response, the server simply echoes to the request the original
function code.

Function code Data Request

Client Server

Initiate request

Perform the action

Initiate the response

Receive the response

Function code Data Response

Figure 4: MODBUS transaction (error free)

For an exception response, the server returns a code that is equivalent to the original function
code from the request PDU with its most significant bit set to logic 1.

Figure 5: MODBUS transaction (exception response)

Client Server

Initiate request

Error detected in the action

Initiate an error

Exception Function code
 Receive the response Exception code

Function code Data Request

Figure 3.12: Modbus transaction [7].

Modbus data model is based on a series of tables [7]. Four primary tables are
described in Tab. 3.2.

Table 3.2: Four primary tables of Modbus data model [7].

Primary tables Object type Type of

Discretes Input Single bit Read-Only
Coils Single bit Read-Write
Input Registers 16-bit word Read-Only
Holding Registers 16-bit word Read-Write

Library libmodbus

Implementation of Modbus communication interface is out of the scope of this thesis
and therefore one of the already existing solutions is used, i.e., the library libmodbus –
an open-source library written in C [8].

LED State Analyzer uses libmodbus 3.0.6 which was the latest released stable ver-
sion at the time of writing this thesis. An interface on a client side (test control system)
uses libmodbus 1.2.0 which is one of the first versions of this library. This version does
not support all features as the newest version, but it is preferred by our customer. Both
versions of the library implement the same communication protocol, and therefore dif-
ferent versions can be used on a client and server side.

3.2.4 Storing of Configuration and Data Files

For its correct functionality, LED State Analyzer requires many configured parameters.
Values of these parameters can be changed by a user and saved for future use. To im-
plement this functionality, it is necessary to choose a suitable format for storing these
data. Based on the previous experiences we decided to use JSON. JSON is language
independent data format, which can store various types of data (strings, numbers, ar-
rays, etc.) [9]. Structure of data in JSON is also easy to understand and data files can
be easily edited by a user. Based on these properties, JSON seems to be suitable for
this kind of application.

14

Library JSON for Modern C++

For creating new JSON files and parsing already existing files, it is necessary to use
interface which provides these functionalities. For that purpose, some of the already
existing libraries can be used. In LED State Analyzer, the library JSON for Modern
C++ was used [10]. This library provides all required functionalities and is easy to use.
Used version of this library is JSON for Modern C++ 3.0.1.

3.2.5 Tools for Digital Image Processing

The significant part of this thesis deals with digital image processing. Most of the
used algorithms are very common in image processing and therefore many algorithms
implementations already exist. There is no need to implement these algorithms again,
therefore, OpenCV library is used.

Library OpenCV

OpenCV (Open Source Computer Vision Library) is one of the biggest libraries pro-
viding tools for many different operations related to the digital image processing.
This library is an open-source and supports several programming languages including
C++ [11]. LED State Analyzer uses OpenCV 3.4.0.

3.3 Digital Image Processing

Digital image processing is a processing of images using a computer. The main goal
of image processing is to extract meaningful information from an image by performing
appropriate operations. For the purpose of this thesis, the meaningful information are
states of LEDs of observed devices, and this information is extracted from captured
image. All methods of image processing used in LED State Analyzer are described in
this section. [12, 13]

3.3.1 Analysis Process

A diagram illustrating the whole process of image analysis implemented in LED State
Analyzer is shown in Fig. 3.13.

15

Real-time analysis

Camera calibration
Localization of pixels corresponding to LEDs

Camera
configuration

Image capturing

D
is

to
rt

io
n

co

ef
fi

ci
en

ts

C
am

er
a

ca
lib

ra
ti

on

m
at

ri
x

Static
parameters

of device

Coordinates of all
pixels of each LED on

undistorted image

Calculation of
homography

Position of device
corners in

undistorted image

Extraction of pixels
corresponding to LEDs

LUT mapping:
undistorted image

⇓
original image

Classifier training

Classification
of LED states

Reference
colors of LEDs

Calculation of
thresholds

Figure 3.13: Diagram of the analysis process.

Image processing requires a lot of processor performance, and therefore it is neces-
sary to optimize the analysis process. This process has four parts: localization of pixels
corresponding to LEDs, camera calibration, classifier training, and real-time analysis.
First three parts are performed only during the application configuration but the real-
time analysis is performed during each recognition of LEDs states, and therefore it is
much more time critical. The primary goal of optimization was to minimize total time
duration of all performed actions executed during real-time analysis. Each part of the
analysis process is described in more details below.

Localization of Pixels Corresponding to LEDs

Coordinates of pixels corresponding to LEDs are calculated based on known coordinates
of device corners on an undistorted image and its dimensions (see Appendix A). This
part of the analysis process is performed whenever a position of any device corner is
changed.

Coordinates of device corners can be found automatically by using methods for
object recognition (e.g., pattern recognition or neural networks [14]), or manually by
a user. Automatic object recognition typically requires good object description, and
therefore it would be complicated to add support for a new type of device. Automatic
object recognition is also much less reliable under different lighting conditions. Because
of these disadvantages, localization of device corners is done manually by a user. Be-
fore starting the analysis, a user is prompted to mark all corners of all devices on an
undistorted image, and these coordinates are used for following calculations.

The application also includes a possibility to correct coordinates of marked corners
when the test setup stays unchanged, but a camera was moved. In this case, a user
can run an object tracking which should correct marks of corners based on the current

16

image. The principle of object tracking is described in Section 3.3.4.

Based on the device size (width and height) and the coordinates of device corners
on an undistorted image, homography between the position of the device corners on the
undistorted image (in pixels) and the real dimensions of the device (in millimeters) is
calculated. The process of finding homography is described in Section 3.3.3.

Coordinates of all pixels corresponding to each LED can be calculated by using in-
verted homography and known positions and dimensions of LEDs in millimeters (device
description). This process generates a list of coordinates of all pixels corresponding to
each LED of a device.

Camera Calibration

LUT mapping is used to map an undistorted image to the original image – obtaining
coordinates of a pixel on the original image when the coordinates of this pixel on the
undistorted image are known. LUT mapping has the same dimensions as the captured
images (in pixels) and a value of their every element corresponds to coordinates of a
pixel on the original image.

LUT mapping is calculated based on user setting of camera calibration matrix and
distortion coefficients. The LUT is updated whenever a camera calibration matrix or
distortion coefficients are changed. The process of getting distortion coefficients, camera
calibration matrix, and calculation of LUT mapping is described in Section 3.3.2.

Classifier Training

Training of classifier for classification of LED state is performed according to reference
colors of LEDs. These colors are used for calculations of linear classifiers between dif-
ferent LED states. Classifier training is performed every time when a reference color of
any LED is changed. Classification is described in Section 3.3.5.

Real-Time Analysis

Real-time analysis is a time-critical part of an analysis process, and therefore it is
necessary to minimize total time duration of all performed actions. The whole process
of real-time analysis is performed whenever an actual state of any LED is requested.

The first step is a configuration of the camera. Configurable parameters include
global gain, exposure time, and white balance. After successful configuration, a new
image is captured and converted to an appropriate format. Then pixels corresponding
to LEDs can be extracted from this image. Pixels extraction is performed by using known
coordinates of pixels corresponds to LEDs on an undistorted image and mapping LUT
from undistorted image to original image. LED states classification follows when pixels
of each LED are known. Classification process is described in a detail in Section 3.3.5.

17

3.3.2 Camera Calibration

Camera calibration is a process of estimating camera parameters using images of a
known pattern captured from different angles by this camera. For modeling of a real
camera with a lens, linear pinhole model cannot be used (see Section 3.3.2). Image
projection of a real camera is nonlinear, and therefore it is necessary to consider pro-
jection deviations. The most significant impact on the camera projection error has the
lens distortion. Results of a camera calibration are coefficients of lens distortions and
camera calibration matrix. When these parameters are known, a LUT mapping from
an undistorted image to a distorted image can be calculated [15].

Pinhole Camera Model

The simplest model of the camera is a pinhole model. This model considers a camera
without any lens and with an aperture as a single point (small hole). Geometric illus-
tration of a pinhole model is shown in Fig. 3.14. In the illustration, there is a projection
of a point X = (X,Y, Z) to the image plane in the distance f from the camera center
C. Intersection of the image plane and principal axis is in the point p [15, 16].

154 6 Camera Models

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

Fig. 6.1. Pinhole camera geometry. C is the camera centre and p the principal point. The camera
centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera
centre.

computes that the point (X, Y, Z)T is mapped to the point (fX/Z, fY/Z, f)T on the
image plane. Ignoring the final image coordinate, we see that

(X, Y, Z)T �→ (fX/Z, fY/Z)T (6.1)

describes the central projection mapping from world to image coordinates. This is a
mapping from Euclidean 3-space IR3 to Euclidean 2-space IR2.

The centre of projection is called the camera centre. It is also known as the optical
centre. The line from the camera centre perpendicular to the image plane is called the
principal axis or principal ray of the camera, and the point where the principal axis
meets the image plane is called the principal point. The plane through the camera
centre parallel to the image plane is called the principal plane of the camera.

Central projection using homogeneous coordinates. If the world and image points
are represented by homogeneous vectors, then central projection is very simply ex-
pressed as a linear mapping between their homogeneous coordinates. In particular,
(6.1) may be written in terms of matrix multiplication as




X

Y

Z

1


 �→




fX

fY

Z


 =



f 0

f 0
1 0







X

Y

Z

1


. (6.2)

The matrix in this expression may be written as diag(f, f, 1)[I | 0] where
diag(f, f, 1) is a diagonal matrix and [I | 0] represents a matrix divided up into a 3× 3
block (the identity matrix) plus a column vector, here the zero vector.

We now introduce the notation X for the world point represented by the homoge-
neous 4-vector (X, Y, Z, 1)T, x for the image point represented by a homogeneous 3-
vector, and P for the 3×4 homogeneous camera projection matrix. Then (6.2) is written
compactly as

x = PX

which defines the camera matrix for the pinhole model of central projection as

P = diag(f, f, 1) [I | 0].

Figure 3.14: Geometric illustration of a pinhole model [16].

Central projection mapping from world to image coordinates is given by Eq. 3.3.
An image has only two coordinates – x and y because z coordinate is constant for all
mapping and it is always equal to focal length f [16].

(X,Y, Z)T 7→
(
f
X

Z
, f
Y

Z

)T

(3.3)

Using pinhole in a real world is not a proper way to capture images because a hole
has to be as small as possible (theoretically infinitely small), and therefore there is not
enough light on the image plane for a short exposure [15].

Lens Distortions

The main reason for estimation of camera parameters is to use them for correction
of lens distortions. There are two considered types of lens distortion: radial distortion
and tangential distortion. Lens distortions can be described by a Taylor expansion of
even function. The accuracy of the description of distortions is given by the number of

18

used parameters of this expansion. Typically, it is sufficient to use only a few first of
them [15, 16].

Radial distortion is usually the most significant one. It is caused by the optical
properties of a camera lens. Distortion is zero in the center of the imager, and it increases
as we approach its edges [15]. With decreasing price and focal length of the lens, this
error becomes more significant [16]. There are two types of radial distortion – negative
radial distortion (“pincushion”) and positive radial distortion (“barrel”). Comparison of
both of these radial distortion types and an undistorted image is shown in Fig. 3.15.

Figure 3.15: Illustrations of radial distortion. From the left: no distortion, positive
radial distortion, negative radial distortion.

Radial distortion is typically described by three coefficients k1, k2, and k3. When a
distortion is rather small, it is sufficient to use only first two coefficients. With known
coefficients of a radial distortion, a corrected location of each pixel can be calculated
based on its known location on distorted image by using Eq. 3.4, 3.5, and 3.6, where
(x̂, ŷ) are corrected coordinates, (x, y) are coordinates on distorted image and (xc, yc)

is the center of distortion [16].

r2 = (x− xc)2 + (y − yc)2 (3.4)

x̂ = xc + (x− xc)(1 + k1r
2 + k2r

4 + k3r
6) (3.5)

ŷ = yc + (y − yc)(1 + k1r
2 + k2r

4 + k3r
6) (3.6)

Second common type of distortion is tangential distortion. It is caused by manu-
facturing defects due to which a lens is not exactly parallel to the imager. Comparison
of an image with tangential distortion and an undistorted image is shown in Fig. 3.16.

Figure 3.16: Illustrations of tangential distortion. From the left: no distortion,
tangential distortion.

19

Tangential distortion is typically described by two coefficients p1 and p2. With
known coefficients of a tangential distortion can be calculated corrected location of each
pixel based on its known location on distorted image by using Eq. 3.4, 3.7, and 3.8, where
(x̂, ŷ) are corrected coordinates, (x, y) are coordinates on distorted image and (xc, yc)

is the center of distortion [15].

x̂ = xc + (x− xc) + (2p1(x− xc)(y − yc) + p2(r
2 + 2(x− xc)2)) (3.7)

ŷ = yc + (y − yc) + (p1(r
2 + 2(y − yc)2) + 2p2(x− xc)(y − yc)) (3.8)

Both types of distortion can be corrected by merging of equations for correction of
radial distortion and tangential distortion.

Camera Calibration Matrix

Camera calibration matrix K is used for transformation from the world coordinates to
the image coordinates. K is a 3×3 matrix defined by Eq. 3.9, where f is a camera focal
length and (px, py) are the coorindates of a principle point (see Fig. 3.14) [16].

K =



f 0 px

0 f py

0 0 1


 (3.9)

Calculation of LUT Mapping

LUT mapping to map pixels of an undistorted image to the pixels of the original image
can be calculated by using camera calibration matrix and distortion coefficients. LUT
mapping gives for each pixel of an undistorted image, coordinates of the corresponding
pixel on the original image. To obtain this LUT, the following procedure has to be
performed for each pixel of an undistorted image:

1. let be (u, v) coordinates of an undistorted image,

2. transform (u, v) from the image coordinates to the world coordinates:[
x y 1

]T
= K−1

[
u v 1

]T
=
[
u−px
f

u−py
f 1

]T
,

3. apply equations for correction of distortions (Eq. 3.5, 3.6, 3.7, and 3.8) to the

coordinates
[
x y 1

]T
to get corrected coordinates

[
x̂ ŷ 1

]T

4. transform (x̂, ŷ) from the world coordinates back to the image coordinates:[
û v̂ 1

]T
= K

[
x̂ ŷ 1

]T
=
[
fx̂+ px fŷ + py 1

]T
,

5. save coordinates (û, v̂) to the element of LUT mapping which corresponds to the
coordinates (u, v).

20

Calibration Procedure

As mentioned above, camera calibration matrix and distortion coefficients can be esti-
mated by performing camera calibration. These parameters are typically estimated by
using methods which minimize an error of reprojection using estimated parameters. An
input of the process of calibration is a set of known point correspondences. These values
are known if used images contain some pattern or object with known dimensions. In
this thesis, a chess pattern printed on a paper was used. Estimation of camera parame-
ters was performed by using function calibrateCamera from the library OpenCV. This
library also provides a code sample for recognition of corners of a chess pattern in the
image [17, 15].

The used camera was calibrated using seven images of a chess pattern printed on A4.
The images were captured from different angles and camera positions. After processing
these images by the function calibrateCamera, the following camera parameters were
estimated:

K =



2800.52 0 1296

0 2800.52 972

0 0 1


,

k1 = −0.242
k2 = 0.033

k3 = 0.173

,
p1 = 0

p2 = 0
.

These values correspond to the used camera Basler daA2500-14uc with lens Basler
Lens C125-0618-5M F1.8 f6mm. The mean error of reprojection using estimated pa-
rameters is 1.3 pixels. This deviation is small enough to allow us to consider the image
capturing as a linear projection (after correction by LUT mapping). Fig. 3.17 shows one
of the images used for calibration before and after correction.

(a) Original distorted image. (b) Undistorted image (after correction).

Figure 3.17: Comparison of an image captured for camera calibration before (3.17a)
and after (3.17b) correction.

3.3.3 Finding Homography

A homography is any mapping Pd → Pd that is linear in the embedded space Rd+1.
It is given by Eq. 3.10, where H is a matrix with dimensions (d + 1) × (d + 1), which
transforms point u in a space Pd to the point u′ in another (or the same) space Pd [14].

21

u′ ' Hu (3.10)

In this thesis, it is used only 2D homography and therefore d = 2. The 2D homog-
raphy maps each point of one image to some point of another image using matrix H.
Illustration of 2D homography applied to the image is shown in Fig. 3.18.

(a) Image before projective transformation. (b) Image after projective transformation.

Figure 3.18: Illustration of projective transformation. Fig. 3.18b was created by
applying homography to the Fig. 3.18a.

For the case of 2D homography, Eq. 3.10 can be rewritten to the Eq. 3.11. This
equation shows mapping of non-homogenous point (u, v) to the non-homogenous point
(u′, v′), where α ∈ R\{0} is a scale of (u′, v′). α must be different from zero, otherwise,
a projection of point (u, v) would be in infinity, which is a case we do not assume [14].

α



u′

v′

1


 =



h11 h12 h13

h21 h22 h23

h31 h32 h33






u

v

1


 (3.11)

Coordinates of point (u′, v′) can be calculated by using Eq. 3.12 and 3.13. These
equations are based on Eq. 3.11 with elimination of a scale α [14].

u′ =
h11u+ h12v + h13
h31u+ h32v + h33

(3.12)

v′ =
h21u+ h22v + h23
h31u+ h32v + h33

(3.13)

Calculation of the Homography Matrix

The calculation of the homography matrix will be based on Eq. 3.11 defined in a previous
section. We are looking for a non-homogenous solution of this equation. Matrix H has
nine elements but only eight unknowns, so we have to fix one of them. Fixing means
setting one of the elements to any non-zero constant. We will set h33 = 1, which leads
to Eq. 3.14 and 3.15.

22

u′ =
h11u+ h12v + h13
h31u+ h32v + 1

(3.14)

v′ =
h21u+ h22v + h23
h31u+ h32v + 1

(3.15)

After multiplying these equations by their denominators and expressing u′ and v′,
we will get Eq. 3.16 and 3.17:

u′ = h11u+ h12v + h13 − h31uu′ − h32vu′ (3.16)

,
v′ = h21u+ h22v + h23 − h31uv′ − h32vv′ (3.17)

.

We can see that there are two equations for each corresponding pair of points
(coordinates before and after transformation), and therefore to solve eight unknowns
we need to know coordinates of four corresponding points. Based on this result we can
construct matrix equation 3.18. By solving this equation, we will get the remaining
coefficients of matrix H. This system of linear equations can also be solved for more
than four known points. In that case, we will get an overdetermined system of linear
equations which can be solved by using least squares method.




u1 v1 1 0 0 0 −u1u′1 −v1u′1
0 0 0 u1 v1 1 −u1v′1 −v1v′1
u2 v2 1 0 0 0 −u2u′2 −v2u′2
0 0 0 u2 v2 1 −u2v′2 −v2v′2
u3 v3 1 0 0 0 −u3u′3 −v3u′3
0 0 0 u3 v3 1 −u3v′3 −v3v′3
u4 v4 1 0 0 0 −u4u′4 −v4u′4
0 0 0 u4 v4 1 −u4v′4 −v4v′4







h11

h12

h13

h21

h22

h23

h31

h32




=




u′1
v′1
u′2
v′2
u′3
v′3
u′4
v′4




(3.18)

In this thesis, there are two cases when the homography is calculated. The first
case is performing of object tracking. The principle of object tracking is described in
Section 3.3.4, but its primary goal is to customize the position of the devices’ corners
marked by the user according to the current camera position. The second case is finding
homography between device on the image and its real dimensions. A user is responsible
for localization of devices’ corners on the image, and then it is necessary to find a
homography between a device (described by its dimensions) and its corners marked on
the image. Known coordinates of its four corners are enough for finding homography,
which can be later used for localization of LEDs on the image based on their known
position on a device.

3.3.4 Object Tracking

Object tracking is a process of finding homography between two images of the same
object, while the object or camera was moved. In this thesis, it is used for localization

23

of devices that were already localized by a user, but after that, a camera was moved
slightly. A typical example is a situation when the application is configured and devices
are localized, and then the arm with the camera flips out. Later, when another test with
the same configuration is going to be performed a camera is usually not in the exact
same position as during the localization of devices. By using an object tracking, the
configuration can be adapted to the actual camera position.

The whole process of the object tracking between two images can be done by per-
forming following actions [18]:

1. detect and describe features of both images,

2. match keypoints across the images,

3. estimate a homography between the images.

Feature Detection and Description

Feature detection is a process of extracting points of interest (keypoints) from the image.
These points are for example edges, corners or sharp changes of colors. Some of the
commonly used algorithms for feature detection are BRISK, SIFT, SURF, ORB, KAZE,
or A-KAZE. Essential parameters for choosing the most suitable algorithm are the time
of detection and description of one feature and number of correct matches [14, 19, 20].

This thesis does not compare the algorithms for feature detection and matching,
and, therefore, a choice of the most suitable algorithm is based on published papers
dealing with comparisons of them. The considered algorithms are BRISK, SIFT, SURF,
ORB, KAZE, and A-KAZE. The best choice seems to be A-KAZE (Accelerated-KAZE)
introduced in 2013. It is faster than SIFT, SURF, and KAZE, and it is also more accurate
than ORB and BRISK. Based on this properties, it was used in this thesis [19, 20, 21].

When the keypoints of both images are known, their descriptors can be calculated.
A descriptor of a keypoint is created based on color intensity changes in the near area
around the keypoint. It is represented by an array of binary values which corresponds to
change of intensity between a pair of pixels: 0 when intensity decrease, 1 when intensity
increase.

Keypoints Matching

Matching of keypoints is a process of assigning the corresponding keypoints between the
images according to their descriptors. We used the brute force method in this thesis.
For each keypoint on the first image, the corresponding keypoint on the second image
is found. The degree of similarity between two keypoints is given by Hamming distance
of their descriptors. Because descriptors are in the form of a binary array, Hamming
distance seems to be an appropriate choice [18].

The keypoints across the images could be matched using 1-nearest neighbor clas-
sifier. A principle of this method is to match each keypoint of the first image with its
nearest neighbor in the second image (using a Hamming distance of their descriptors).

24

This approach is possible but it can be improved by using a ratio of distances between
two nearest neighbors. In this method, the 2-NN classifier is used and for each keypoint
it is calculated if the distance to its nearest neighbor is smaller than the distance to its
second nearest neighbor multiplicated by a threshold distance ratio. If it is so, keypoints
are added to the list of matched keypoints, and the algorithm continues with the next
keypoint of the first image. Otherwise, this keypoint is not used [22].

Fig. 3.19 shows an example of probability density functions for correct and incorrect
matches in terms of the ratio of nearest to second nearest neighbors of each keypoint.
Based on this figure, the threshold of a distance ratio of 0.8 was chosen. This means
that the keypoint from the first image is matched with its nearest neighbor from the
second image only if the distance ratio between the nearest neighbor and the second
nearest neighbor is less or equal to 0.8.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F

Ratio of distances (closest/next closest)

PDF for correct matches
PDF for incorrect matches

Figure 11: The probability that a match is correct can be determined by taking the ratio of distance
from the closest neighbor to the distance of the second closest. Using a database of 40,000 keypoints,
the solid line shows the PDF of this ratio for correct matches, while the dotted line is for matches that
were incorrect.

second-closest neighbor. If there are multiple training images of the same object, then we
define the second-closest neighbor as being the closest neighbor that is known to come from
a different object than the first, such as by only using images known to contain different ob-
jects. This measure performs well because correct matches need to have the closest neighbor
significantly closer than the closest incorrect match to achieve reliable matching. For false
matches, there will likely be a number of other false matches within similar distances due to
the high dimensionality of the feature space. We can think of the second-closest match as
providing an estimate of the density of false matches within this portion of the feature space
and at the same time identifying specific instances of feature ambiguity.

Figure 11 shows the value of this measure for real image data. The probability density
functions for correct and incorrect matches are shown in terms of the ratio of closest to
second-closest neighbors of each keypoint. Matches for which the nearest neighbor was
a correct match have a PDF that is centered at a much lower ratio than that for incorrect
matches. For our object recognition implementation, we reject all matches in which the
distance ratio is greater than 0.8, which eliminates 90% of the false matches while discarding
less than 5% of the correct matches. This figure was generated by matching images following
random scale and orientation change, a depth rotation of 30 degrees, and addition of 2%
image noise, against a database of 40,000 keypoints.

7.2 Efficient nearest neighbor indexing

No algorithms are known that can identify the exact nearest neighbors of points in high di-
mensional spaces that are any more efficient than exhaustive search. Our keypoint descriptor
has a 128-dimensional feature vector, and the best algorithms, such as the k-d tree (Friedman
et al., 1977) provide no speedup over exhaustive search for more than about 10 dimensional
spaces. Therefore, we have used an approximate algorithm, called the Best-Bin-First (BBF)
algorithm (Beis and Lowe, 1997). This is approximate in the sense that it returns the closest

20

Figure 3.19: Example of probability density functions for correct and incorrect
matches in terms of the ratio of nearest to second nearest neighbor of each key-
point [22].

Estimation of Homography

When the list of corresponding keypoints is complete, a homography between images
can be calculated. Although most of the keypoints in the list should correspond (in-
liers), there can also be some keypoints which are not corresponding (outliers). Before
calculation of the homography, we should distinguish between these two groups. Oth-
erwise, a few poorly assigned keypoints could significantly decrease the accuracy of the
homography. It follows that a robust method for estimation of the homography should
be used.

For estimate of the homography, the method called RANSAC (Random sample
consensus) was used. RANSAC is an iterative method for estimation of parameters (in
this case homography) from a set of data containing outliers. Unlike the least-squares
method, this method excludes outliers, and therefore estimated parameters are typically

25

much more accurate. Comparison of these two methods is shown in Fig. 3.20 [16].

4.7 Robust estimation 117

b

d
a

c

a b

Fig. 4.7. Robust line estimation. The solid points are inliers, the open points outliers. (a) A least-
squares (orthogonal regression) fit to the point data is severely affected by the outliers. (b) In the
RANSAC algorithm the support for lines through randomly selected point pairs is measured by the num-
ber of points within a threshold distance of the lines. The dotted lines indicate the threshold distance.
For the lines shown the support is 10 for line 〈a,b〉 (where both of the points a and b are inliers); and
2 for line 〈c,d〉 where the point c is an outlier.

estimated homography, and consequently should be identified. The goal then is to de-
termine a set of inliers from the presented “correspondences” so that the homography
can then be estimated in an optimal manner from these inliers using the algorithms de-
scribed in the previous sections. This is robust estimation since the estimation is robust
(tolerant) to outliers (measurements following a different, and possibly unmodelled,
error distribution).

4.7.1 RANSAC

We start with a simple example that can easily be visualized – estimating a straight
line fit to a set of 2-dimensional points. This can be thought of as estimating a 1-
dimensional affine transformation, x′ = ax+ b, between corresponding points lying on
two lines.

The problem, which is illustrated in figure 4.7a, is the following: given a set of 2D
data points, find the line which minimizes the sum of squared perpendicular distances
(orthogonal regression), subject to the condition that none of the valid points deviates
from this line by more than t units. This is actually two problems: a line fit to the data;
and a classification of the data into inliers (valid points) and outliers. The threshold t is
set according to the measurement noise (for example t = 3σ), and is discussed below.
There are many types of robust algorithms and which one to use depends to some extent
on the proportion of outliers. For example, if it is known that there is only one outlier,
then each point can be deleted in turn and the line estimated from the remainder. Here
we describe in detail a general and very successful robust estimator – the RANdom
SAmple Consensus (RANSAC) algorithm of Fischler and Bolles [Fischler-81]. The
RANSAC algorithm is able to cope with a large proportion of outliers.

The idea is very simple: two of the points are selected randomly; these points define
a line. The support for this line is measured by the number of points that lie within a
distance threshold. This random selection is repeated a number of times and the line
with most support is deemed the robust fit. The points within the threshold distance are
the inliers (and constitute the eponymous consensus set). The intuition is that if one of
the points is an outlier then the line will not gain much support, see figure 4.7b.

(a) Estimation using least-squares method.

4.7 Robust estimation 117

b

d
a

c

Fig. 4.7. Robust line estimation. The solid points are inliers, the open points outliers. (a) A least-
squares (orthogonal regression) fit to the point data is severely affected by the outliers. (b) In the
RANSAC algorithm the support for lines through randomly selected point pairs is measured by the num-
ber of points within a threshold distance of the lines. The dotted lines indicate the threshold distance.
For the lines shown the support is 10 for line 〈a,b〉 (where both of the points a and b are inliers); and
2 for line 〈c,d〉 where the point c is an outlier.

estimated homography, and consequently should be identified. The goal then is to de-
termine a set of inliers from the presented “correspondences” so that the homography
can then be estimated in an optimal manner from these inliers using the algorithms de-
scribed in the previous sections. This is robust estimation since the estimation is robust
(tolerant) to outliers (measurements following a different, and possibly unmodelled,
error distribution).

4.7.1 RANSAC

We start with a simple example that can easily be visualized – estimating a straight
line fit to a set of 2-dimensional points. This can be thought of as estimating a 1-
dimensional affine transformation, x′ = ax+ b, between corresponding points lying on
two lines.

The problem, which is illustrated in figure 4.7a, is the following: given a set of 2D
data points, find the line which minimizes the sum of squared perpendicular distances
(orthogonal regression), subject to the condition that none of the valid points deviates
from this line by more than t units. This is actually two problems: a line fit to the data;
and a classification of the data into inliers (valid points) and outliers. The threshold t is
set according to the measurement noise (for example t = 3σ), and is discussed below.
There are many types of robust algorithms and which one to use depends to some extent
on the proportion of outliers. For example, if it is known that there is only one outlier,
then each point can be deleted in turn and the line estimated from the remainder. Here
we describe in detail a general and very successful robust estimator – the RANdom
SAmple Consensus (RANSAC) algorithm of Fischler and Bolles [Fischler-81]. The
RANSAC algorithm is able to cope with a large proportion of outliers.

The idea is very simple: two of the points are selected randomly; these points define
a line. The support for this line is measured by the number of points that lie within a
distance threshold. This random selection is repeated a number of times and the line
with most support is deemed the robust fit. The points within the threshold distance are
the inliers (and constitute the eponymous consensus set). The intuition is that if one of
the points is an outlier then the line will not gain much support, see figure 4.7b.

(b) Estimation using RANSAC method.

Figure 3.20: Estimation of parameters of linear function from set of points by using
least-squares method (3.20a) and RANSAC method (3.20b) [16].

This figure shows an estimation of a linear function from the points. There are ten
inliers and two outliers. It can be seen that estimation by least-squares method is less
accurate than by RANSAC method. The accuracy of estimation by using RANSAC
method is measured by the number of points within a threshold distance of the line
(in Fig. 3.20 thresholds are dotted lines). It can be seen, that when a line is estimated
using points a and b (both inliers), all inliers are within threshold distances (10 points
are between thresholds). But when a line is estimate using points c and d (only d is
inlier), only one inlier is within threshold distances (2 points are between thresholds).
Line estimated using points a and b is evaluated as more precise because there are more
points within threshold distances (10 > 2)[16].

The input of a RANSAC method used in this thesis is a set of matched keypoints.
RANSAC threshold (Rthr) is set by a user. The goal of an algorithm is to estimate
homography between two images. Homography is estimated by performing following
steps:

1. select a subset of matched keypoints randomly,

2. calculate homography for this subset,

3. apply homography H to all matched keypoints of the first image xi and compare
the result with a position of the corresponding keypoint on the second image yi,

4. split keypoints to inliers and outliers

(a) inlier: ||yi −H · xi|| ≤ Rthr

(b) outlier: ||yi −H · xi|| > Rthr,

5. save number of inliers and outliers for this homography,

6. if the algorithm was performedN times exit it, otherwise, continue from the step 1.

After exit of the algorithm, the homography with the most inliers is chosen as the
most accurate and it is used for subsequent actions [17, 15].

26

3.3.5 LED State Classification

Classification of LED state is possible when colors of all pixels corresponding to the LED
are known. These pixels can be extracted from the image by using known dimensions
of observed device and homography between a device and an image as described in
Section 3.3.1. The color of each pixel is characterized by three color channels: red (R),
green (G), and blue (B).

Classification is optimized for recognition of two-colored SMD LED, which consists
of red and green LED, with a diffuser. There are four possible states of the LED and all
of them are described in Tab. 3.3. Based on this consideration, we can assume that only
red and green color channel is important for LED state recognition. This assumption was
checked by multiple measurements of colors of LEDs in different states and comparison
of intensities of the blue color channel from these measurements. Based on this test,
any correlation between the intensity of the blue channel and the state of the LED
was not determined. Therefore, only the intensity of red and green color channel for
classification is used.

Table 3.3: Considered states of LED.

Green LED Red LED LED state (observed color)

off off off
on off green
off on red
on on orange

An important step before classification of LED state is a selection of pixels cor-
responding to it because classification of wrong pixels can increase classification error.
There are two supported shapes of a LED: square and round. If the LED has a shape
of a rectangle or a square, all pixels inside it are analyzed. If the LED has a shape of
a circle, it is computationally more demanding to check if the pixel is inside the circle
(especially after projective transformation of this circle). In that case, the LED is con-
sidered to be a square with a side three-quarter of a circle diameter. Illustration of this
simplification is shown in Fig. 3.21.

¾ d

¾
 d

d

Analyzed area

LED

Figure 3.21: Analyzed area for state recognition of a round LED.

27

The number of pixels on an image corresponding to a LED depends on many factors,
such as the size of LED, the distance between the camera and the observed device, etc.
Theoretically, the number of pixels can be from one to the total number of pixels on the
image, but a classification of LED state based on only a few pixels would be error-prone.
It led to the introduction of restriction which allows classification only if each LED is
visible on at least 50 pixels.

Since the number of pixels for classification is not known a classifier has to be
independent on their count. It is also necessary to assume that some of the classified
pixels do not correspond to LED (LED is not localized precisely) and if the number of
these pixels is not too significant, they should not influence classification accuracy. The
colors of pixels corresponding to randomly selected LEDs in different states is shown
in Fig. 3.22. This figure shows pixels as points located based on their intensity of red
and green channel. All the pixels were extracted by using the procedure described in
Section 3.3.1. The most significant impact on the final result has a camera configuration
(exposure time, gain, and white balance) and its location.

0 64 128 192 255

Red intensity [-]

0

64

128

192

255

G
re
en

in
te
n
si
ty

[-
]

Off LED

Green LED

Red LED

Orange LED

Figure 3.22: Color of pixels corresponding to each LED state (only red and green
color channel).

It is evident that colors of pixels of LEDs form four clusters. Clusters are not sharply
divided, but they are still easy to see. For a better illustration Fig. 3.23 shows average
colors of the LEDs and their covariance ellipses.

28

0 64 128 192 255

Red intensity [-]

0

64

128

192

255

G
re
en

in
te
n
si
ty

[-
]

Off LED

Green LED

Red LED

Orange LED

Figure 3.23: Average color of pixels corresponding to each LED state with covari-
ence elipse around it (only red and green color channel).

It can be seen in the figure that spaces between average colors of different LEDs
are relatively big and they should be readily separable. It is expected that, before
classification, a user sets a reference color of each classified LED state. Based on these
values thresholds between them can be calculated. These thresholds can be used for
LED state classification.

The light intensity when the LED is turned on (green, red, and orange) can differ
according to the relative position of camera and device. This fact was considered when
finding the most suitable thresholds for classification. Covariance ellipses show that
green LED expand mostly in the green channel, red LED in red channel and orange in
both of them. Based on these results, suitable thresholds between green, red, and orange
color could be set as a line passing through the origin and middle of the two neighboring
reference colors. Threshold between off state and green state is set as a horizontal line
passing the average green channel intensity of these two states. The threshold between
off state and red state is set as a vertical line passing the average red channel intensity
of these two states. The threshold between off state and orange state is set as the line
between the intersection of the horizontal line and the threshold between the green and
orange and the intersection of the vertical line and the threshold between the orange
and the red. Model example with added thresholds is shown in Fig. 3.24.

29

0 64 128 192 255

Red intensity [-]

0

64

128

192

255

G
re
en

in
te
n
si
ty

[-
]

Off LED

Green LED

Red LED

Orange LED

Figure 3.24: The average color of pixels corresponding to each LED state with
covariance ellipse around it and thresholds between classification classes (only red
and green color channel).

It can be seen in this figure, that even if the intensity of brightness of green, red
or orange LED were higher, most of the pixels of LED would be still between the same
thresholds and therefore it would be correctly classified. The same thing does not apply
to the case when the intensity of brightness would be much lower than the light of
reference LEDs. In that case, a LED with the lower intensity could be classified as off
although it would be turned on. In this situation, the positions of thresholds can be
changed manually by a user. Detailed information about this functionality is written in
the user’s manual in Section 4.6.1.

The LED classification is done by performing following steps:

1. select one pixel out of the set of pixels corresponding to LED,

2. compare its color to the threshold and classify it,

3. increase the number of pixels classified to corresponding class (noff , ngreen, nred,
or norange) by one,

4. if all pixels were already classified continue, otherwise, repeat from the step 1.,

5. evaluate most probable state of the LED based on the number of pixels classified
to each class (max{noff , ngreen, nred, norange}).

This approach prevents significant impact on the classification by a few outliers. It
can be useful when not all of the pixels belong to the LED, so these pixels do not have
an impact on the classification if there is more than 50 % of correctly classified pixels.
Classification map created according to the thresholds and colors of pixels of reference
LEDs that was used for calculation of thresholds is shown in Fig. 3.25.

30

0 64 128 192 255

Red intensity [-]

0

64

128

192

255

G
re
en

in
te
n
si
ty

[-
]

Off LED

Green LED

Red LED

Orange LED

Figure 3.25: Example of classification map of randomly selected reference LEDs
and all pixels corresponding to these LEDs.

It can be seen that most of the pixels are classified correctly, and only a few of them
are in a wrong class. In particular, pixels belonging to LEDs which are turned on and
are classified as off, may be classified actually correctly. These pixels may belong, for
example, to the front panel instead of the LED and they are only erroneously extracted
from the image.

This type of classifier is used for all classification of LEDs in LED State Analyzer.
In the application, the probability of belonging to each class is also calculated. It is
calculated as a percentage of all pixels classified to the particular class.

3.4 Application Design

LED State Analyzer is designed as an object-oriented application written in C++ using
external libraries written in C++ or C. The whole program can be split into the four
following blocks:

• devices database and LED state analysis,

• GUI and file management,

• camera interface,

• interface with the test control system.

Simplified class diagram with an illustration of these blocks and classes which be-
longs to them is shown in Fig. 3.26. This diagram also shows the use of external libraries
by the classes (Gtkmm is used by all classes in the block). Names of classes are the same
as in the application source code. A brief description of the classes follows:

• MainWindow controls the main window of LED State Analyzer. All handlers of
GUI of this window are present in this class.

31

• Preferences controls window of preferences of camera and image processing. All
handlers of GUI of this window are present in this class.

• ClassifierSetup controls window for editing parameters of classifier of a device.
All handlers of GUI of this window are present in this class.

• About controls window with information about the application. All handlers of
GUI of this window are present in this class.

• DrawingLib provides tools for drawing shapes used in the application GUI.

• CameraController implements interface between camera and the application.
This class provides methods for configuration, controlling the camera, and con-
verting captured image to the suitable format.

• Device describes one DUT whose LEDs are analyzed. This class contains infor-
mation about device type, parameters, and classified states of LEDs.

• Analyzer provides tools for recognition of LEDs states of DUTs from the captured
image. This class also provides tools for the correction of image distortions and
object tracking.

• ModbusServer implements Modbus server used for communication with the test
control system.

Camera interface

Devices database and
LED state analysis

Interface with the test
control system

GUI and file management

Device

1..n

Class
External library

About DrawingLib

libmodbus 3.0.6

JSON for Modern
C++ 3.0.1

OpenCV 3.4.0

CameraController

pylon 5.0.11

MainWindow

PreferencesClassifierSetupDevice

Analyzer ModbusServer

G
tk

m
m

 3
.0

Figure 3.26: Simplified class diagram of LED State Analyzer.

32

3.4.1 Design of GUI

GUI of the whole application was designed using Glade (see Section 3.2.1). Glade gener-
ates XML file (filename extension is .glade) which can be loaded and used for creating
GUI after the application launch. LED State Analyzer consists of four windows – the
main application window, a window with preferences, a window for customization of
LED states classification, and a window with information about the application. Each
of them is controlled by separate class as it is shown in Fig. 3.26.

3.4.2 Camera Interface

An interface between the application and industrial camera uses library pylon 5.0.11.
The interface was tested only with the camera Basler dart daA2500-14uc, and therefore
it does not guarantee correct functionality with a different camera. Initialization of the
instance of class CameraController requires a connected camera.

After successful initialization, it is possible to configure camera setting or to cap-
ture images. CameraController allows setting of exposure time, global gain and white
balance. Other camera parameters are left at their default values. Function for taking
an image sends a request to the camera and reads received data. For image processing,
the OpenCV library which uses class Mat for image interpretation is used and therefore
the received data are converted to an object of this class. Function for taking an image
then returns an object of type Mat which represents a new image and is suitable for
further processing.

3.4.3 Stored Data and Their Format

All data saved and loaded by the application are stored in JSON files. There are
two types of files which contain information necessary for application configuration:
config_data.json and database_of_devices.json. These two files are necessary for
the launch of application or loading of configuration saved in the past. When the con-
figuration is saved by the user, these two files are created. For the default configuration,
both of these files are already in the gobal_data folder. Without these files, it is not
possible to create a new project.

Test Setup Configuration

Configuration of the test setup is stored in files called config_data.json. These files
contain following information: camera matrix, camera distortion coefficients, camera
gain, white balance parameters, time of exposure for localization of devices’ corners,
time of exposure for LED state analysis, RANSAC threshold, IP address, and port
number of a Modbus server and list of all devices with information about their type ID,
name, corners positions and parameters of classification thresholds.

File config_data.json does not contain any information about static parameters
of devices (shape, number of LEDs, etc.). This file only contains identification number

33

(ID) of the device type and this ID corresponds to some data record with its static
parameters in file database_of_devices.json.

Static Parameters of Devices

Each type of device is described by its static parameters. These information is stored
in the file called database_of_devices.json. In this file, there is an array whose every
element contains static parameters of one device type. The element number in the array
matches the device type ID. Parameters describing a device type are following: name of
a device type, device width, device height, possible LED colors (green, red, orange, or
arbitrary combinations of them), width of LED, height of LED, shape of LED (rectangle
or circle), and an array of parameters describing blocks of LED. Each block contains
information about horizontal and vertical coordinate of the top left LED, horizontal
and vertical space between LEDs, number of LEDs in one column, and number of LEDs
in one row. Meaning of the device dimensions is described in Appendix A.

3.4.4 Multithread Approach

After startup, the application is running in one main thread. The main thread is used
for controlling GUI, performing configurations, and testing the LED state recognition
accuracy. When the real-time analysis starts, a new thread is created. This thread is
responsible for the creation and controlling a Modbus server and also for the LEDs
states analysis when a request from the client is received. When the real-time analysis
stops, the second thread is safely deleted and program continues to run only in the main
thread.

The second thread is created by using POSIX threads. It has to be able to control
GUI (update of communication log) which means that the GUI is controlled by both
threads (by the main thread and this one). This situation could potentially cause appli-
cation instability and therefore tools for multithread applications provided by Gtkmm
are used.

3.4.5 Error Handling

For the correct functionality of the application, it is necessary to handle many situations
which could lead to application instability or crash. These situations can be caused by a
user or connected devices. Some of the most critical cases and their handling are written
in the following paragraphs.

A user has to perform camera initialization before starting to use it. Another step
of configuration is possible only after successful initialization of the camera. Otherwise,
the user is not allowed to continue. A connection of the camera is also checked when
the image is taken (manually by a user or during a real-time analysis). If there is a
problem with communication with the camera, a user is informed that the camera was
disconnected and for the next work it is necessary to connect and initialize it again.

When the previously saved test setup configuration and a device database are

34

loaded, consistency of these files is checked. If any file is corrupted or some data records
are in a wrong format, the configuration is not used, and a user is informed about the
possibility of files corruption.

When a user localizes devices’ corners, it is checked if corners positions make sense.
Each device has the shape of a rectangle, and therefore corners have to always make a
convex polygon (independent on camera position). Convexity check can be performed
by checking if all corners are oriented clockwise or counter-clockwise. If the orientation
of any corner differs from others, then the polygon is not convex and a user is prompted
to change a position of corners.

During localization of devices’ corners by a user, it is checked whether areas which
are expected to correspond to LEDs are sufficiently large for an analysis. The frame
around each LED on a device must contain at least 50 pixels. This value is considered
to be a threshold for accurate classification of LED state and it was found through an
experiment. If there are fewer pixels inside LED frames, a user is prompted to change
the location of corners.

3.4.6 Communication Between LED State Analyzer and the Test
Control System

The communication between LED State Analyzer and the test control system was al-
ready mentioned in the Section 3.1.1. Illustration of the process of real-time analysis
from the communication perspective is shown in Fig. 3.27. This diagram is split into
two parts: initialization and cyclical requesting of LEDs states. The illustration also
shows which actions are accomplished by a server and which of them are accomplished
by a client.

The first step of the communication process is the start of Modbus server (LED
State Analyzer) and its initialization. Client (test control system) can then connect to it
and send a request for new LEDs states. When the server receives a request, the whole
process of analysis described in Section 3.3.1 is performed. After completing the LEDs
state recognition, new data are stored in Modbus registers. When the client receives
them it can send next request. The next request shall not be sent before receiving the
response to the previous one.

35

Modbus server Modbus client

C
yc

lic
al

 r
eq

u
es

ti
ng

In
it

ia
liz

at
io

n

Initialization of the
Modbus server

Waiting for connection of
the client

LEDs states sent

Waiting for reqest to
LEDs states

Request for LEDs states
received – performing of

the analysis process

Request for LEDs states
sent

LEDs states received

Initialization of the
Modbus client

Figure 3.27: Process of a real-time analysis from the communication point of view.

A server can be closed only by a user or due to an unexpected error. When client
closes the connection on its side, the server is waiting until client restores the com-
munication or the user closes the server. This property is implemented based on the
requirements in Chapter 2.

Structure of a Data Frame

Data provided by LED State Analyzer are stored in 16-bit Modbus holding registers.
After request from a client, current LEDs states are recognized and these data are
converted to a sequence of bits which is saved to the registers. Structure of data in
registers is shown in Fig. 3.28.

S0 S1 S0 S1 S0 S1

LED n of
device 0

(last LED)

LED 0 of
device 1

LED m of
device k

...S0 S1 S0 S1

LED 0 of
device 0

LED 1 of
device 0

...

Figure 3.28: Illustration of data structure sent from a server to the client.

State of each LED of each device is characterized by two bits. Every Modbus register
can hold states of up to eight LEDs. Data are stored in the following order: state of
the first LED of a first device is stored in two LSB of the first (zero) register, a state

36

of the last LED of the last device is stored in the last used register. States of all LEDs
of the first device from the lowest LED number to the highest are stored firstly. LEDs
of the second device follows in the same order, etc. There is no space between LEDs of
different devices.

As mentioned above, state of each LED is characterized by two bits. There are four
considered LED states: off, green, red, and orange. Bit values corresponding to each of
these states are written down in the Tab. 3.4.

Table 3.4: Considerd states of LED and corresponding value of state bits.

LED state S0 S1

off 0 0
green 1 0
red 0 1
orange 1 1

Generating of Interface Files for a Client Application

To reqeust new LED states on a client side, the interface provided by LED State Analyzer
can be used. This interface consists of one header file and one C++ source file. Both these
files can be generated using LED State Analyzer according to the actual configuration
of the test setup. Use of these files for communication with Modbus server is described
in Section 4.7.1.

The content of a header file is always the same and it is copied from the
file global_data/LedStateAnalyzer_template.h. The content of a source file de-
pends on the configuration of the test setup. Template for it is loaded from
the file global_data/LedStateAnalyzer_template.cpp, but line /* INSERT DEVICES
HERE */ is replaced by lines appending new instances of structure Device into vector
m_devices. Member variables of the instances are defined by parameters of devices in
the actual test setup configuration.

3.4.7 Documentation

For the future edits of the LED State Analyzer, the documentation of the entire appli-
cation is included in the attachments. The documentation is in the form of a website
generated by a tool Doxygen. All used classes and their methods are described here.
The documentation can be used by open the file documentation/index.html in any
web browser.

37

38

Chapter 4

User’s Manual

This chapter contains a detailed manual for using the developed system. This chapter
is mostly dedicated to a description of the user interface of LED State Analyzer from
the user’s point of view. All necessary information for correct configuration and use and
also application restrictions are described in this chapter.

When using the system, the user should always proceed according to the following
steps:

1. mounting of a camera holder on the rack,

2. attachment of the industrial camera to the holder,

3. adjusting aluminum arm with the camera to the suitable position (see Fig. 3.2),

4. connecting the test control system, computer with the application LED State
Analyzer and industrial camera according to Fig. 3.11,

5. launching LED State Analyzer.

4.1 Requirements of LED State Analyzer

The user’s manual is written for LED State Analyzer version 1.0 which was developed
within the scope of this thesis. The application was tested on 64-bit Linux distribu-
tion Mint 18, but any 64-bit Linux distribution should be suitable to use. It is neces-
sary to have all required libraries installed before launching or building the application
(makefile is placed in folder release). List of required libraries and their versions
follow:

• Gtkmm 3.0,

• pylon 5.0.11,

• libmodbus 3.0.6,

• OpenCV 3.4.0.

39

Installation files for all these libraries except Gtkmm are located in the folder
libraries in a root directory of the application. This folder also contains file
readme.txt describing the installation procedure or links to installation instructions
provided by the authors. The application was tested only with these versions of li-
braries, and therefore a correct functionality with other versions cannot be guaran-
teed. When the application is successfully built (file release/LED_State_Analyzer is
available and executable), a desktop link can be created by performing bash script
generate_desktop_icon.sh located in the root directory.

4.2 Start of the Application

For communication with the test control system using a port number less than 1024, it is
necessary to run the application as a root user. Bash script generate_desktop_icon.sh
generates two desktop shortcuts: LED State Analyzer and LED State Analyzer (root).
If a user wants to use a port number requiring root access, LED State Analyzer (root)
can be launched. Otherwise, it is sufficient to launch LED State Analyzer.

After a start of the application, a user is prompted to select a working directory.
Selected directory is used for storing all data produced by the application including
its configuration and database of devices. If the selected directory already contains
application configuration and database of devices, then they are loaded. If the directory
does not contain existing configuration or the files are corrupted, a default configuration
from the directory global_data is loaded. After loading the configuration, the main
window is displayed, and the chosen directory is used as a working one.

Figure 4.1: Icon of the application LED State Analyzer.

4.3 Preferences

Any time the application is running (except a real-time analysis), it is possible to change
a configuration of image capturing and image processing. All these parameters can be
changed in the window Preferences (Setting → Preferences). Preview of this window
is shown in Fig. 4.2. Description of these parameters and their recommended values
follow.

40

Figure 4.2: Preview of the window Preferences.

4.3.1 Camera Calibration

First parameters are camera calibration matrix and coefficients for correction of radial
and tangential distortion. These parameters are used for suppression of camera distor-
tion on captured images. Values filled by default were obtained by camera calibration
(see Section 3.3.2). Camera calibration matrix is a 3×3 matrix which contains intrinsic
parameters of the camera. This matrix and distortion coefficients are used for image
adjustment to the form suitable for localization of device corners by a user and local-
ization of LEDs by the application. It is necessary to have an image deformed as little
as possible, and therefore these parameters must be precise. LEDs on devices cannot be
localized sufficiently precise on a distorted image, which makes the analysis much less
reliable.

4.3.2 Exposure Times Setting

Exposure forms the connection between lighting, time, and camera hardware (CCD
sensor) [23]. The goal is to set exposure time optimal concerning light conditions of
environment and requirements to the image. Camera Basler daA2500-14uc allows to set
exposure time between 10 µs and 1 s [2]. Exposure time can be separately configured
for two different cases when the camera captures an image.

41

Setting of the Exposure Time for Devices’ Corners Localization

The first case is when the captured image is used for localization of device corners by
a user. In this case, the set value is entirely up to the user because this value has no
impact on the image analysis. It is recommended to set a value for which the user will
be able to see and mark device corners easily. An exposure time of an image for feature
localization can be for example somewhere between 40 000 µs and 100 000 µs. This
value also depends on the opening of the iris.

Setting of the Exposure Time for Image Analysis

The second case is when the captured image is used for the analysis. A setting of
this parameter is much more critical and has a significant impact on the accuracy of
LEDs states recognition. Testing image, captured with the same configuration as the
one for the analysis can be checked in the tab Configuration of LED State Recognition
(see Section 4.6). Exposure time should be set to such a value that the most brightness
LEDs (typically in the center of the image) should not be saturated on the image (LEDs
should not look like white, but their real color should be easily recognizable). For that
reason, the exposure time should be set just below saturation. However, if the time is
too short, there can be a problem with recognition of LEDs which are controlled by
PWM. In that case the LEDs may sometimes be captured as turned off even though
they are turned on. Exposure time also depends on LEDs brightness and the set iris,
and therefore the optimal value has to be found experimentally by a user. Very rough
estimate and a good starting point for testing can be about 5 000 µs.

4.3.3 Gain

Gain allows the brightness of the image captured by a camera to increase. The used
camera supports only setting of global gain, and therefore it is not possible to increase
the brightness of only one color channel. Camera Basler daA2500-14uc allows to set
gain from 0 to 24 dB. This camera supports only digital gain which is applied after
conversion of measured values which means that these values are only multiplicated by
a value according to the set gain. It means that the use of gain does not bring any
additional information and it may even distort measured values. However, this feature
can be useful for increasing the user’s comfort during camera configuration [2].

4.3.4 White Balance

White balance allows the intensity of a color channel to increase proportionally. This
feature can be used for example when colors of an image are distorted by ambient
lighting. Balance ratio of each channel can be set to a value between 1 and 5. Setting
a balance ratio of some channels to for example 1.2 means that the intensity of this
channel is increased by 20% [2].

42

4.3.5 RANSAC Threshold

RANSAC method is used during object tracking in localization of devices’ corners (see
Section 4.5.2). Used method of object tracking and meaning of RANSAC threshold
is explained in Section 3.3.4. RANSAC threshold is an acceptable error (in pixels) of
mapping from one image to another. If the threshold is too small, corresponding points
can be classified as outliers. Otherwise, if the threshold is too big, not corresponding
points can be classified as inliers. Reasonable RANSAC threshold should be between 1
and 10 pixels.

4.4 Test Setup Configuration

The main window contains four tabs and first of them, which is opened after the start
of the application, is called Test Setup Configuration. This tab provides an interface to
configure a test setup based on the currently tested devices. Static parameters of each
device are displayed and also the name of each device can be changed here. It is not
allowed to switch to another tab until the industrial camera is successfully found and
initialized. Preview of this tab is shown in Fig. 4.3.

Figure 4.3: Preview of the main window with selected tab Test Setup Configuration.

4.4.1 List of Devices

List of devices consists of all currently tested devices. The types of devices can differ. A
device can be added by the button Add, and the selected device can be removed by the
button Remove. A maximal number of devices is not restricted, but the total amount
of LEDs on them is. Maximal number of LEDs in one configuration is set to 800.

43

4.4.2 Naming of Devices

Each device has a name which can be changed by the user. A new name can be written
to the text entry next to the Device name and has to be unique for each device.

4.4.3 Camera Connection

Before switching to another tab, it is necessary to connect an industrial camera and
pressing the button Find Camera to establish communication with it. The applica-
tion supports only one type of camera which is Basler daA2500-14uc. Other types of
industrial cameras are not supported in this version of the application.

4.5 Localization of Devices’ Corners

Tab Localization of Devices’ corners is determined for localization of corners of all de-
vices by the user. This step is necessary for correct LED recognition. Firstly, a new
image should be captured or loaded from the file if it was taken before and the con-
figuration of devices on the rack did not change. If the image is taken, it is saved in a
working directory. Independently of the way of getting an image, the image is shown
on the screen, and devices’ corners localization can be performed. Preview of this tab
is shown in Fig. 4.3.

Figure 4.4: Preview of the main window with selected tab Localization of Devices’
corners.

44

4.5.1 Device Corners Marking

Before configuration of LED state recognition and real-time analysis all corners of all
devices shall be marked on the image. Marking corners is intuitive. Select device from
the list (on the left side) → select radial button which corresponds to one of the device
corners → click on the image where this corner is located. To increase the precision,
zoom can be used. Image can be zoomed 1× (original image), 2×, or 4×.

When all four corners of the selected device are defined, borders of a device and
frames around LEDs are shown in the image. A position of LEDs is based on static
parameters of the device type. LEDs should be within frames as precise as possible, and
therefore it can be necessary to change device corners location to increase the precision
of frames location.

4.5.2 Object Tracking

Sometimes the devices on the rack are precisely in the same deployment used for anal-
ysis in the past but the relative position of the camera to them is different. In such
situations the positions of corners from the loaded configuration do not precisely match
corners positions on a new image. This is a case when using an object tracking may be
appropriate. Object tracking is a process of finding homography between two images of
the same object taken from different places.

To use an object tracking, a current image has to be captured and old configuration
containing locations of devices’ corners should be loaded. If the current image is shown,
a reference image which corresponds to the loaded configuration can be loaded (button
Load Reference Image). The process of object tracking takes a few seconds and after
that the positions of devices’ corners are transformed with respect to the current image.
This feature can save time of devices’ corners localization when the position of DUTs
stays unchanged.

Note: Object tracking is computationally demanding operation and can take a few
seconds (typically 1 – 5 s). Time of computation primarily depends on the performance
of used computer.

4.6 Configuration of LED State Recognition

Tab Configuration of LED State Recognition is used to test the accuracy of LEDs states
recognition and modify reference colors of each LED state. Each device can support
up to three LED colors: green, red, and orange (simultaneously shining green and red).
Reference color of each of these states and also a state when the LED is turned off can
be configured here. Preview of this tab is shown in Fig. 4.5.

To set reference LEDs according to their real values or to test LED state recognition
accuracy, a new image can be captured (button Capture Testing Image). A captured
image is undistorted using coefficients set in Preferences window. A cutout of the image
with the currently selected device is shown in a middle of the window.

45

Figure 4.5: Preview of the main window with selected tab Configuration of LED
State Recognition.

4.6.1 Classifier Configuration

The classifier is automatically configured according to the colors of reference LEDs,
but it can also be configured manually. The classifier is separately configured for each
device. A preferred way of configuration is to select LEDs whose average color will
be used as reference values for LEDs states recognition. Selecting the reference LED
for each recognized LED state can be performed in the top right part of the window
(section Reference LEDs). After selecting the reference LEDs, their colors can be set as
a reference by pressing the button Set Reference LEDs.

Sometimes the user may want to setup a classifier manually or at least edit its
parameters. Editing the classifier parameters can be performed by pressing the button
Classifier Setup. Preview of a displayed window is shown in Fig. 4.6.

Figure 4.6: Preview of a window for classifier setup.

46

As the figure shows, four thresholds can be adjusted. Graphical meaning of them is
shown in Fig. 4.7. It also shows how can these thresholds be changed. For correct setup
a user should proceed according to the following steps:

• If a red or orange LED is misclassified as an off LED, value of off/red threshold
should be decreased and vice versa.

• If a green or orange LED is misclassified as an off LED, value of off/green threshold
should be decreased and vice versa.

• If a green LED is misclassified as an orange LED, value of green/orange threshold
should be decreased and vice versa.

• If an orange LED is misclassified as a red LED, value of orange/red threshold
should be decreased and vice versa.

G
r
e
e
n

i
n
t
e
n
s
i
t
y

[
-
]

Red intensity [-]

off/green

off/red

orange/red

green/orange

0 255

0

255

12864 192

192

128

64

+

-

+

-

- +

-

+

Off

Green

Red

Orange

Figure 4.7: Illustration of thresholds used for classification. Thresholds off/green
and off/red are defined by intensity of green or red respectively. Thresholds
green/orange and orange/red are given by the angles that constrain with the x-
axis (red intensity).

4.6.2 State Recognition Testing

Beside configuration of a classifier, it is also possible to test the accuracy of LEDs states
recognition in this tab. Recognition of LEDs states can be performed by pressing the
button Recognize LED States if an image is available. After recognition, the illustration
of a selected device is updated, and LEDs of the device are colored based on their
recognized state.

After recognition, an actual image of device can be seen together with its illus-
tration with recognized LEDs states side by side and therefore it is easy to see if the
recognition was done correctly. The whole process of LED state recognition is described

47

in Section 3.3, but the basic principle is that for each LED, theprobabilities of belong-
ing to each of classes (off, green, red, orange) are calculated. LED is then classified to
the class with the highest probability. The higher the difference between the highest
probability and the other probabilities, the higher the robustness of the recognition.
Classification process is described in Section 3.3.5.

Detailed information about classification of each LED can be seen in a bottom
right part of the window (section Classification of selected LED). LED can be chosen
using combo box and then the selected LED is marked in the image and also in the
device illustration. Under the combo box, the average intensity of each color channel
of selected LED and probabilities of LED belonging to particular class are shown. The
highest probability is in bold.

4.7 Real-Time Analysis

Tab Real-Time Analysis starts a real-time analysis of LEDs states. Preview of this tab
is shown in Fig. 4.8. A Modbus server has to be configured before the starting the
analysis. Configurable parameters of communication are IP address and port number
of the test control system. Real-time analysis can be launched by pressing the button
Start Analysis. A process of communication between client and server is described in
Section 3.4.6. After starting the real-time analysis, it is not allowed to switch to another
tab or edit preferences. When the analysis is finished, a user can turn off the Modbus
server by pressing the button Stop Analysis (available only when the analysis is running).

In the center of the window, a communication log is displayed. It shows a state
of communication between the client and the server, data sent to the client, and time
between receiving a request and a sent response. Data are in hexadecimal format split
into 16-bit values which correspond to Modbus registers. The log can be deleted by
pressing the button Clear Log or it can be saved to the file by pressing the button Save
Log.

48

Figure 4.8: Preview of the main window with selected tab Real-Time Analysis.

4.7.1 Interface for Sending Requests from a Client Application

To request LEDs states from the client application, the interface provided by LED
State Analyzer can be used. This interface consists of one C++ source file (.cpp) and
one header file (.h). These files can be generated and saved by pressing the buttons
LedStateAnalyzer.cpp and LedStateAnalyzer.h. File LedStateAnalyzer.h is the same for
every configuration. File LedStateAnalyzer.cpp differs depending on types, names, and
order of devices. A user should always generate new file LedStateAnalyzer.cpp after a
change of test setup configuration to prevent communication problems. Generated files
can be included in the client application running on the test control system. The files
contain class LedStateAnalyzer which provides methods for update LEDs states and
reading state of any LED.

Use of class LedStateAnalyzer is straightforward. All functionalities are provided
by one instance of this class. Before creating an instance, Modbus client shall be already
initialized. A constructor of class LedStateAnalyzer expects structure with Modbus
configuration data as a parameter. After creation of the object, its member methods
can be used. There are two public member methods which can be used by a user.

Method bool updateLedState() sends a request for data to Modbus server (appli-
cation LED State Analyzer) and after processing the request, new data are read from
the Modbus registers. These data are saved into member variable and remain unchanged
until next call of this method. If a state update is performed correctly, a method returns
true, otherwise it returns false.

Method LedState getLedState(std::string name, unsigned int ledId) re-
turns state of selected LED. LED whose state is requested is specified by the device

49

name which has to be the same as the name used in the Test Setup Configuration in LED
State Analyzer, and ID number of the LED. LEDs are always numbered from top to bot-
tom and from left to right. Returned LED state is one of the values of enum LedState,
possible values correspond to off, green, red, orange, and error. State of LED is always
based on last data received from Modbus server by using method updateLedState. The
method getLedState does not communicate with Modbus server and therefore returned
state of LED does not have to be up to date. If it is required to get the current state,
a method updateLedState has to be called immediately before method getLedState.

4.8 Generating of Database of Devices

Default database of devices types located in the folder global_data contains only one
testing type of device. This file shall always contain at least one device type. Otherwise,
an error occurs when loading it. New file database_of_devices.json can be generated
using python script database_of_devices_generator.py located in the root appli-
cation directory. Some parameters of device type are described in this script, rest of
them are described in Appendix A. database_of_devices.json located in the folder
global_data is used when a new project is created. Every saved project contains its
database which can differ among the projects.

50

Chapter 5

System Testing

The system was tested under real conditions. Testing procedure was done according to
the user’s manual in Chapter 4. DUTs used for the tests were the same type as devices
used during development. Devices of a different type were not available and therefore
they could not be used. However position of devices under test, their number and also
light conditions was different. Test setup used during testing is shown in Fig. 5.1.

Figure 5.1: Test setup used during testing with attached industrial camera.

5.1 Mechanical Arrangement and Wiring

First of all, it was necessary to mount mechanical construction to the rack and connect
the computer performing the analysis with the industrial camera and test control sys-
tem. Assembling of a mechanical construction and its mounting on a rack with DUTs
is straightforward and it was done according to the description in Section 3.1.2. Con-
struction is sufficiently rigid and adjustable arm makes it possible to move the camera

51

away when a test is not running.

Wiring of the system was done according to the diagram in Section 3.1.5. A con-
nection between an industrial camera and the computer performing the analysis (USB
3.0) provides sufficient performance for transmission of images every 500 ms. A com-
munication channel between the computer performing the analysis and the test control
system is also sufficient for transmission of information about LED states.

5.2 Configuration of LED State Analyzer

A configuration of the application LED State Analyzer based on actual test setup was
performed according to the user’s manual in Chapter 4.

After initialization of a camera and adding DUTs to the list of devices, a user is
prompted to localize corners of these devices on the image. If a camera calibration is
done correctly, it is easy to set a sufficiently accurate frame around devices so that all
LEDs are localized correctly. When a previously saved configuration of a test setup is
used but a camera was moved since the time of its creation, object tracking instead of a
repetition of manual localization of device corners on the image can be used. The object
tracking could not be used in the real-time analysis, because it is very time-consuming,
and also its accuracy is uncertain. The measured time duration of an object tracking
between two 5 MP images was 1.58± 0.03 s.

Next step is a configuration of LED state classification. The classifier is trained
based on reference color of each LED state extracted from the image. If it is not possible
to use reference LEDs for classifier training, it can be configured manually. A possibil-
ity of manual configuration was the main reason for selecting a classifier composed of
multiple linear classifiers and, therefore, it is easily configurable by the user.

5.3 Response Analysis of the System

Real-time analysis of LEDs is the most time-critical part of the system. LED state
recognition has to be fast and accurate. Time performance of a real-time analysis was
evaluated by measuring a time duration of critical processes during analysis. Time
durations shown in Tab. 5.1 were calculated from one hundred measurements. Measured
times are strongly dependent on the performance of a used computer, and therefore it
will differ based on hardware. Tests were performed on laptop with CPU Intel Core
i7-4810MQ and 16 GB RAM.

52

Table 5.1: Time durations of critical parts of a real-time analysis.

Process Time duration [ms]

Camera configuration 23± 1

Image capturing 217± 4

Image pre-processing 33± 2

Analysis of LEDs states (200 LED) 9± 2

Total response (measured on a client side) 283± 5

The table shows measured time duration of the most critical processes of real-
time analysis and also a total response time measured in a client application. Time of
camera configuration is mostly given by a camera firmware and camera API, and it
cannot be significantly decreased. Majority of the overall time duration takes an image
capturing. This time is given by limits of USB 3.0 and a camera firmware, and there is no
possibility of decreasing it. The time duration of an image pre-processing includes saving
of captured image and its conversion to appropriate format for subsequent analysis. The
actual analysis of LEDs states takes the least amount of time. It is optimized for the
best performance and all calculations which do not have to be done during the real-time
analysis are performed during the configuration process. Measured time corresponds to
the analysis of 10 devices, each of them has 20 LEDs, where each LED is shown on
about 217 pixels. Time of analysis of LEDs states depends on the total number of LEDs
and their sizes.

The duration of a total response measured in the client application (time between
sending a request for current LED states and receiving a response) is about 283 ms
which meet the system requirements that this time has to be less than 500 ms.

5.4 System Stability and Accuracy

Communication between the computer performing the analysis and the test control
system is stable and reliable. On the client side (test control system), there should
always be an interface provided by LED State Analyzer used. This interface provides
methods for easy update and reading of LED states.

One of the most critical properties of the system is the accuracy of LED state recog-
nition. It was measured using a stress test. First of all, the application was configured.
The test was performed under other lighting conditions than during a configuration.
Before the test was launched, the camera was shifted, and positions of the devices’
corners were automatically corrected by using object tracking feature. The test was
launched after performing these actions. It lasted about one hour, and accuracy of LED
recognition was 100 %.

53

54

Chapter 6

Conclusion

The goal of this thesis was to design and implement a system for automatic recognition
of LEDs states of devices under test. States of diagnostic LEDs are recognized from
the images captured by camera Basler daA2500-14uc. All interactions with the user are
performed by the LED State Analyzer application. This application provides interface
for configuration of the camera, LED recognition, and also communication with the test
control system. Communication with the test control system is via Modbus protocol.

The developed system is fully functional and meets all requirements defined by our
customer. The system was tested under real conditions, and it was found sufficiently
reliable and accurate. One part of the thesis is dedicated to a user’s manual which
contains all information necessary to configure and use the system.

Restrictions

Although the system meets all requirements, it also has some restrictions. These re-
strictions are mostly caused by adaptation of the system for using it with the devices
defined by our customer. The main restriction is that the only supported colors of LEDs
are green, red, and orange. The classifier is adapted for recognition of these colors and,
therefore, it cannot be easily changed for recognition of other LED colors. There is also
restriction related to the shape of DUTs. Only rectangular shape of a device is sup-
ported. A rectangle is sufficient for most of the applications, but it can be limiting for
some unusual shapes of devices.

Using an object tracking was considered in real-time analysis during development.
It was found that it is not possible because of its time duration, which is much longer
than the maximal allowed response time. Therefore, an object tracking can be used only
before the start of a real-time analysis.

Possible Improvements

The system and especially the LED State Analyzer application could be improved in
many ways. The application could be extended to support more general devices with

55

different types of LEDs with more colors. Object tracking could also be improved for use
in real-time analyses. For example, images with lower resolution could be used which
should increase the speed of object tracking but it could also decrease its accuracy.

The client-side interface provides the greatest space for improvement. At this point,
it is possible to obtain only current state of each LED on each DUT. The possibilities
of this interface could be extended for example to detect LED flashing, to determine
flashing frequency and a duty cycle. However, these improvements can be made in the
client application according to current requirements and without any interventions to
the application on the server-side.

56

Bibliography

[1] Photo of Basler dart daA2500-14uc [online]. [Accessed 6 December 2017]. Available
from: https://cz.mouser.com/images/basler/lrg/CS_Mount_SPL.jpg

[2] Basler dart USB 3.0 – Product Documentation. Basler AG [online]. v09. [Accessed
15 January 2018]. Available from: https://www.baslerweb.com/en/sales-support/
downloads/document-downloads/basler-dart-usb-3-0-users-manual/

[3] How does the YUV color coding work?. Basler AG [online]. [Accessed 6 December
2017]. Available from: https://www.baslerweb.com/en/sales-support/knowledge-
base/frequently-asked-questions/how-does-the-yuv-color-coding-work/15182/

[4] Basler Lens C125-0618-5M F1.8 f6mm - Lenses. Basler AG [online]. [Accessed 16
December 2017]. Available from: https://www.baslerweb.com/en/products/vision-
components/lenses/basler-lens-c125-0618-5m-f1-8-f6mm/

[5] Documentation Overview. gtkmm - C++ Interfaces for GTK+ and GNOME [on-
line], [Accessed 5 December 2017]. Available from: https://www.gtkmm.org/en/
documentation.html

[6] pylon Linux x86. Basler AG [online]. [Accessed 2 December 2017]. Available from:
https://www.baslerweb.com/en/products/software/pylon-linux-x86/

[7] Modbus Specifications and Implementation Guides. Modbus Organization [online],
[Accessed 11 December 2017]. Available from: http://www.modbus.org/specs.php

[8] RAIMBAULT, Stéphane. A Modbus library for Linux, Mac OS X, FreeBSD, QNX
and Win32. libmodbus [online]. [Accessed 2 January 2018]. Available from: http:
//libmodbus.org/

[9] Introducing JSON. JSON [online]. [Accessed 2 February 2018]. Available from:
https://www.json.org/

[10] LOHMANN, Niels. JSON for Modern C++. GitHub [online]. [Accessed 4 April
2018]. Available from: https://github.com/nlohmann/json

[11] OpenCV library. OpenCV [online]. [Accessed 2 April 2018]. Available from: https:
//opencv.org/

[12] JAYARAMAN, Subramania, ESAKKIRAJAN, S. and VEERAKUMAR, T. Digital
image processing. New Delhi: Tata McGraw Hill Education, 2009. ISBN 978-0-07-
014479-8.

57

https://cz.mouser.com/images/basler/lrg/CS_Mount_SPL.jpg
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/basler-dart-usb-3-0-users-manual/
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/basler-dart-usb-3-0-users-manual/
https://www.baslerweb.com/en/sales-support/knowledge-base/frequently-asked-questions/how-does-the-yuv-color-coding-work/15182/
https://www.baslerweb.com/en/sales-support/knowledge-base/frequently-asked-questions/how-does-the-yuv-color-coding-work/15182/
https://www.baslerweb.com/en/products/vision-components/lenses/basler-lens-c125-0618-5m-f1-8-f6mm/
https://www.baslerweb.com/en/products/vision-components/lenses/basler-lens-c125-0618-5m-f1-8-f6mm/
https://www.gtkmm.org/en/documentation.html
https://www.gtkmm.org/en/documentation.html
https://www.baslerweb.com/en/products/software/pylon-linux-x86/
http://www.modbus.org/specs.php
http://libmodbus.org/
http://libmodbus.org/
https://www.json.org/
https://github.com/nlohmann/json
https://opencv.org/
https://opencv.org/

[13] JÄHNE, Bernd. Digital image processing. 6th rev. and ext. ed. New York: Springer,
2005. ISBN 3-540-24035-7.

[14] SONKA, Milan, HLAVAC, Vaclav and BOYLE, Roger. Image processing, analysis,
and machine vision. 3rd ed. Toronto: Thompson Learning, 2008. ISBN 0-495-08252-
x.

[15] KAEHLER, Adrian and BRADSKI, Gary R. Learning OpenCV 3: computer vision
in C++ with the OpenCV library. Sebastopol, CA: O’Reilly Media, 2017. ISBN
978-1-491-93799-0.

[16] HARTLEY, Richard and ZISSERMAN, Andrew. Multiple view geometry in com-
puter vision. 2nd ed. New York: Cambridge University Press, 2003. ISBN 978-0-
521-54051-3.

[17] Camera Calibration and 3D Reconstruction. OpenCV [online]. [Accessed 8
February 2018]. Available from: https://docs.opencv.org/2.4/modules/calib3d/
doc/camera_calibration_and_3d_reconstruction.html

[18] AKAZE and ORB planar tracking. OpenCV [online]. 18 December 2015. [Ac-
cessed 7 February 2018]. Available from: https://docs.opencv.org/3.1.0/dc/d16/
tutorial_akaze_tracking.html

[19] KARAMI, Ebrahim, PRASAD, Siva and SHEHATA, Mohamed. Image Matching
Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted
Images. St. John’s, Canada: Memorial University, 2015.

[20] ALCANTARILLA, Pablo F., NUEVO, Jesús and BARTOLI, Adrien. Fast Explicit
Diffusion for Accelerated Features in Nonlinear Scale Spaces. Atlanta, GA, USA:
Georgia Institute of Technology, 2013.

[21] ANDERSSON, Oskar and MARQUEZ, Steffany R. 2016. A comparison of object
detection algorithms using unmanipulated testing images: degree project. Stock-
holm, Sweden: KTH Royal Institute of Technology. pp 31.

[22] LOWE, David G. Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision. 2004, 60(2), 91-110.

[23] HORNBERG, Alexander. Handbook of machine and computer vision: the guide for
developers and users. Weinheim: Wiley-VCH, 2017. ISBN 978-3-527-41339-3.

58

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/3.1.0/dc/d16/tutorial_akaze_tracking.html
https://docs.opencv.org/3.1.0/dc/d16/tutorial_akaze_tracking.html

Appendix A

Dimensions Describing a Device

All dimensions used for a description of devices in LED State Analyzer are shown in
Fig. A.1. Similar names of dimensions are also used in file database_of_devices.json.
The figure shows only one block of LEDs, but one type of device can contain many
rectangular blocks of LEDs. One device type supports only one type of LEDs.

...

...

...

.

.

.

.

.

.

.

.

.

V
e

rt
ic

a
l L

E
D

 s
p

a
ce

o

f L
ED

s
b

lo
ck

 n

Horizontal LED space
of LEDs block n

LE
D

 h
ei

gh
t

LED width

LEDs in row in
LEDs block n

LEDs in column in
LEDs block n

H
ei

gh
t

Width

Column margin of
LEDs block n

R
ow

 m
ar

gi
n

of

LE
D

s
bl

oc
k
n

Figure A.1: General device with marked dimensions.

59

60

Appendix B

Attached CD Contents

LED State Analyzer

Visual Functional Testing of Electronic Systems.pdf – full text of the thesis

global_data

libraries

gui

src – folder containing object files

default_config_data.json – default app. configuration

default_database_of_devices.json – default database of devices

libmodbus 3.0.6 – installation files of libmodbus library

OpenCV 3.4.0 – installation files of OpenCV library

pylon 5.0.11 – installation files of pylon library

readme.txt – instructions for installation of libraries

gui.glade – application GUI in form of XML

logo.png – application logo/icon

release

LED_State_Analyzer – executable file

makefile – makefile of the application LED State Analyzer

LedStateAnalyzer_template.cpp – template for app. interface on client side

LedStateAnalyzer_template.h – template for app. interface on client side

database_of_devices_generator.py – python script for generating device database

generate_desktop_icon.sh – shall script for generating desktop shortcuts

src – folder containing source files

documentation – source code documentation

index.html – main page of the documentation

61

62

	Introduction
	System Requirements and Specifications
	System Design and Implementation
	System Design
	Function Principle
	Mechanical Solution
	Selection of the Industrial Camera
	Design of an Optical Path
	Wiring Diagram
	Target Platform

	Used Software Tools
	Graphical User Interface (GUI)
	Industrial Camera API
	Modbus Communication Protocol
	Storing of Configuration and Data Files
	Tools for Digital Image Processing

	Digital Image Processing
	Analysis Process
	Camera Calibration
	Finding Homography
	Object Tracking
	LED State Classification

	Application Design
	Design of GUI
	Camera Interface
	Stored Data and Their Format
	Multithread Approach
	Error Handling
	Communication Between LED State Analyzer and the Test Control System
	Documentation

	User's Manual
	Requirements of LED State Analyzer
	Start of the Application
	Preferences
	Camera Calibration
	Exposure Times Setting
	Gain
	White Balance
	RANSAC Threshold

	Test Setup Configuration
	List of Devices
	Naming of Devices
	Camera Connection

	Localization of Devices' Corners
	Device Corners Marking
	Object Tracking

	Configuration of LED State Recognition
	Classifier Configuration
	State Recognition Testing

	Real-Time Analysis
	Interface for Sending Requests from a Client Application

	Generating of Database of Devices

	System Testing
	Mechanical Arrangement and Wiring
	Configuration of LED State Analyzer
	Response Analysis of the System
	System Stability and Accuracy

	Conclusion
	Bibliography
	Dimensions Describing a Device
	Attached CD Contents

